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1.0 SUMMARY

The program L224 (QR) is primarily a tool for applying classical control systems analysis
and synthesis techniques. To make use of the program, the physical system to be analyzed is
initially described by a system of simultaneous ordinary linear differential equations with
constant coefficients. By manipulating the input matrix of equations, sets of eigenvalues
that represent the denominator (poles) and numerator (zeros) of the system transfer function
can be calculated. From the transfer functions, studies of time response, frequency response,
and root locus may be performed.

The QR program can be divided into five different analyses: eigenvalue and determinant
rooting, time response, frequency/PSD response, root locus, and unsteady aerodynamics
computations.

Significant program restrictions are:

e The number of eigenvalues for a matrix cannot exceed 140. (Default = 60)

° READTP matrices cannot exceed 70 x 70. (Default 30 x 30)

(] Maximum number of repeated poles in the time response calculation is 6

° Maximum number of root locus or flutter eigenvalue points which can be plotted
is 2500

o Maximum vector array size is 120
L Maximum number of gains is 48
®  Maximum number of phases is 6

® Maximum number of matrix locations into which gain values may be inserted is 8

® Maximum body stations array size is 8
®  Maximum forcing functions array size is 12

® Maximum number of reduced frequencies is 70. (Default = 30)







2.0 INTRODUCTION

The computer program QR (L224) was developed for use as either a stand-alone program,
or as a module of the DYLOFLEX program system (ref. 1). QR was designed to meet

the DYLOFLEX contract requirements as defined in reference 2. These requrements
specify the need for a computer program which can apply classical control systems
analysis and synthesis techniques to a set of simultaneous linear differential equations.

The objective of this volume is to aid those persons wishing to use this program. To meet
this objective, the following items are discussed:

® Engineering and mathematical equations used to formulate the problem
®  Program structure and design
®  Guidelines for the execution of the program

Sample problems are also presented to aid the user in the execution of the program.



3.0 SYMBOLS AND ABBREVIATIONS

a,b,c.d,e, f,g h,1 Dummy coefficients used for the mathematical
description of a typical control system.

Elements of the matrix polynomial of a

“nm system with the feedback gain removed.

[A] State variable coefficient matrix.

[Ao] Matrix qf coefficieqts of the zero power of s
formed in the QR eigenvalue process.

[A]] Matrix of coefficients of the first power of s

formed in the QR eigenvalue process.

[A (')] Product ofE\l]‘l I:Ao]'

bym Elements of the matrix polynomial of a
system which are factors of the feedback gain.

br Reference length, meters (in.).

[B] State variable input matrix.

COEF Leading coefficient of the determinant of the
matrix polynomial.

CP Leading coefficient of the polynomial formed
by the system's complex poles.

C (s) A controlled variable.

CZ Leading coefficient of the polynomial formed
by the system's complex zeros.

[C] Output matrix of state variables.

[CS] Structural damping matrix.

{C3} Generalized forcing function matrix.

[D] Output matrix for inputs.

ep(s) Feedback signal.



e4(s)

o1 6]

[B,00]

[t

f(t)
f(s)
{F}
(7]
[F]

[F(s)]

IF)]I

[Fp(s)]
)]

G(s)
h(t)
H(s)

{ID}

Actuating signal.

Complex airfoce matrix which when
multiplied by the freestream dynamic
pressure becomes an aerodynamic stiffness
matrix.

Complex airforce matrix normalized by
2, [By(0)] = -1/k[E10)] -
Flutter frequency in hertz.

h eigenvalue in hertz.

Frequency on the jt
Forcing funtion in the time domain.
Forcing function in the s-plane.
Force vector array.

h

Matrix of coefficients for the it power of's.

Matrix of coefficients for the jth power of s
with the selected column replaced by the

appropriate vector column.

Matrix polynomial in s.

Remaining determinant after the obvious roots
have been extracted from the determinant of
the matrix polynomial.

Matrix polynomial composed of the systems
open loop poles.

Matrix polynomial composed of the systems
open loop zeroes.

Flutter damping ratio.

Transfer function of the forward path.
Impulse response function.

Transfer function of the feedback path.

Identification array which relates to the y's
to the q's and the derivatives of q.



mn
(%)

K;. Ky, K3
L

£ ()

m

[Ms]
(1] [Ma] - [M3]
[M4] - [Ms]

Reduced frequency = wb_ [V .

System feedback gain.
Magnitude of a complex gain.

Residues of the system transfer function.

Structural stiffness matrix.

Gust spectrum constants.

Gust characteristic length, meters (ft).
Laplace operator.

Number of poles.

Number of repeated values of the jth pole.
Structural inertia matrix.

Generalized structural stiffness damping and
inertia matrices.

Generalized aerodynamic stiffness and
damping matrices.

Number of zeroes.
jth

pole of a system.

Polynomial formed fron the poles of the
system.

Column vector of generalized coordinates.
jth obvious root of the matrix polynomial.
System input.

Laplace variable.

System transfer function.

System transfer function multiplied by the
square root of the gust spectrum.



{x}
v}

Z(s)

B(t)
®y(w)
P (w)

¥(t)

Complex conjugate of T'(w).

Column vector of coefficients for the jih

power of s .
Gust velocity, length/sec.

Freestream velocity of the airplane,
meter/(ft/sec).

Flutter velocity, meter/sec (ft/sec).
Column vector of state variables.

Column vector of output variables.
1th

zero of a system.

Polynomial formed from the zeroes of the
system.

Airforce coefficient relating the airforce
matrix to a specific flight condition, a
non-dimensional factor.

Dimensional correction factor.

h

Damping factor for the jt eigenvalue of the

polynomial in s .
jth eigenvalue of the polynomial in s .

Root mean square value of the gust velocity,
meter/sec (ft/sec).

Density of air, kg—secz/meters4(l b-secz/ft4) .
Phase angle of the complex gain.
Wagner indicial lift growth function.
Power spectral density of the gust.
Power spectral der\1sity of the response.
Kissher indicial lift growth function.

Frequency, rad/sec .



4.0 ENGINEERING AND MATHEMATICAL DESCRIPTION

4.1 .THE BASIC POLYNOMIAL EQUATION

The QR program is primarily a tool for applying classical control system analysis and
synthesis techniques. The physical system to be analyzed is initially described by a system
of simultaneous ordinary linear differential equations with constant coefficients. These
equations can then be reduced to a system of simultaneous algebraic equations in the s-plane
by use of the Laplace transformation. The set of algebraic equations can be expressed as:

n m
2o [Fl ey =4 22 {U;} sl (1)
i=0 i=0

where:

[Fi] = matrix of coefficients for the ith power of s

{q} = column vector of the system variables transformed into the s-plane

{Uj = column vector of coefficients for the jth power of s which represent the

excitation functions transformed into the s-plane

On the left-hand side of equation (1), the set of F matrices shall be referred to as the matrix
polynomial in s . The set of U matrices on the right-hand side of equation (1) shall be called
the vector polynomial in s .

By manipulating the matrix and vector polynomials, sets of roots can be formed which
represent the poles and zeroes of the system transfer functions. These roots are obtained
using the QR algorithm (ref. 3). The transfer functions can be used to perform root-locus,

time-response, and frequency-response calculations.

In the DYLOFLEX system, the equations of motion for an aircraft expressed in the time
domain are:

[Ml] {a} + [Mz] {a} + [M3] @y + [M4] (Q)*®(t) + [MS:I () *®(t)

= {C3} Vg *(®) (2



where:

[M1][Ma] - [M3]
[Ma] . [Ms]
jcst

aircraft's generalized stiffness, damping and inertia matrices

generalized aerodynamic stiffness and damping matrices

generalized forcing function coefficients

O(t), P(t) = Wagner and Kiisner indicial lift growth functions
3q(t) % = system's generalized coordinates representing the airplane's
rigid and elastic coordinates
vg(t) = gust velocity

These matrix coefficients are formed by the DYLOFLEX equations of motion program,
L217 (ref. 4). Assuming the airplane is initially at rest, equation (2) can be written in the
s-plane as

[[M]] + s[My] + s2[M3] + s[My] £(@) + s7[Ms] ﬁ(fb):l 2@}

= s{C3} 2(W) £y 3)

If an active control system (e.g., yaw damper, stability augmentation system, etc.) is part of
the dynamic analysis, then the matrices in equation (3) can be augmented to include the
mathematical equations (usually written as polynomials in s) which describe the control
system. This task can be accomplished either in the DYLOFLEX equation modifying
program L219 (ref. 5), or in QR. The augmented generalized coordinate matrix would
include not only the airplane's rigid and elastic coordinates but also the control system
variables. The M, M, and M3 matrices would be expanded to include the polynomial
coefficients needed to define the control system.

The DYLOFLEX equation modifying program, L219, forms the characteristic equation of

(3) including Wagner indicial lift growth effects. Using a Wagner indicial lift growth function
of the following form:

(1) = 1 - a7t - bePit )
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the characteristic equation of (3) becomes
[54 [M3] + & [[Mz] + [Ms] + (@ BYM3] - (@ ¢ bl)[MSJ]
52 [[Ml]' + Mg + @ * By [[Ma] + [Ms]) + ey 8[M]
(aq *+ O)[Ma] - (2181 + blal)[Ms]]
+s [(al + ,n,l)[[Ml] ; [M4]]+ alﬁl[[Mz] N [MS]]
a1y + byog)[My] + ayy [ i) + [M4]:I:I:|a£ @} =0 5)

Equation (5) is a fourth order matrix polynomial in s and is of the form of equation (1). The
roots of equation (5) will provide an assessment of the airplane stability.

If no lift growth effects are taken into account, the Kiissner and Wagner functions are unity
and (3) becomes a second order equation in s .

[[[Ml] + [M4]] + s[[Mz] + [Ms]] + 52[M3]] % Y. (q)} = §C3f 2 (vy) (6

For the non-lift-growth case, L219 will form the matrix polynomial and the C3 matrix to be
passed to QR.

4.2 OPEN-LOOP AND CLOSED—-LOOP SYSTEMS

Equations describing either an open-or closed-loop system can be placed in the form of
equation (1). The purpose of this section will be to show how by proper manipulation of
the proper elements in the matrix polynomial, the system characteristics can be ascertained.

A closed-loop control system with negative feedback is shown in figure 1.

e (s}
+ 2 [ |
R(s} > > Gis) » C
s e _Gls) | (s)
e1(s)
K H{s)

Figure 1. — Typical Closed-Loop Control System



The transfer function for the closed-loop system is

C(s) _ G(s)
R(s) 1 +K * G(s) * H(s)

(N

Opening the feedback path of the control system shown in figure 1 would give the open-loop
system shown in figure 2.

e2(5)
Ris) Q) = Gls) » Cls)

eqls) =— —{x}- His) [+

Figure 2. — Typical Open-Loop Control System

The transfer functions for the open-loop system are

C(s)

R(s) = G(s)
°1 ) * *
RGs) = K * G(s) * H(s) (8)

The characteristic equation for the closed-loop system shown in figure 1, is the demoninator
of the system transfer function (equation (7))

1+K*G(s)*H(s) = 0 9

The roots or poles of the characteristic equation for a closed - loop system indicate the
closed-loop stability of that system.

From classical control system analysis (ref. 6), it can be shown that the open-loop poles can
be obtained from the roots of equation (9) when the gain, K, is set to zero. The open loop-
zeroes are also obtained from equation (9) by setting the gain to infinity. The open-loop
transfer function can be expressed as

Z(s) )
* * =
K * G(s) * H(s) K ( P (10)

11
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where:

Z(s) = polynomial whose roots are open-loop zeroes

P(s) = polynomial whose roots are open-loop poles

and the closed-loop transter function becomes
P(s)+K*Z(s) = 0 (11)

The gain K may be expressed as a complex number which contains magnitude and phase
information

K = K (cos¢ + ising) (12)
where:
K = magnitude of the gain
¢ = phase angle of the gain

By varying the magnitude and phase of K and calculating the roots of- equation (11) for each
variation, the root locus of the closed-loop system can be obtained.

This is accomplished in QR by manipulating the matrix polynomial of equation (7). For the
purpose of discussion, let G(s) and H(s) of figure 1 be represented by the ratio of polynomials
ins

. +b
Gs) = as
cs”"tdst+e
t Hes) = 8 13
s hs + 1 (13)

Using equation (13) and figure 1, the following set of simultaneous equations can be formed

e](s) + ez(s) = R(s)
(cs2 + ds +e)C(s) - (as +b) ez(s) =0

(hs + 1) eq(s) -K(fs + g) C(s) = 0 (14)

In matrix form the equations become:

c 0 o0 0 0 o0 11 0 ey(s) R(s)
210 0 c| +s [0 -a d|+l0 b e er(s)p =< 0 (15)
o 0 O h 0 -Kf 1 0 -Kg C(s) 0




Equation (15) is now of the form of equation (1). The matrix positions of the gain, K, in the
matrix polynomial shall be referred to as the gain locations. By first specifying the gain
locations in the matrix polynomial of the system, then allowing the gain to vary in
magnitude and phase, and finally solving for the roots of the matrix polynomial at each

gain variation, the root locus of the system can be obtained. By using the GAINS and the
COMPUTE ROOT LOCUS control cards in QR, the aforementioned functions are performed.

4.3 TRANSFER FUNCTION FORMATION -

QR can form the transfer function for any system variable, q; , in equation (1) using the
matrix and vector polynomials. From Cramer's rule, q; can be found by substituting the
vectory polynomial into the kth column of the system s matrix polynomial, calculating the
determinant of the resulting matrix polynomial, and dividing that determinant by the
system's characteristic determinant.

Q = 0F 5 (16)

In equation (16) the matrices F'ilare polynomial coefficient matrices [Fi] with the kth

column replaced by the 3Uj§ vector coefficient matrix.

The characteristic determinant, which is the denominator of (16), can be expressed in terms
of its roots and leading coefficient as

H;i [Fi]si:| = CP ﬁ (s+F) (17)
i=0 o /

where P. represents the complex roots of the characteristic equation and CP is the leading
coefficient. These roots are the poles of the equation (16). In the QR program, the poles of
the transfer function are obtained by using the COMPUTE POLES control card. This
control card causes QR to calculate the roots of the matrix polynomial and store these roots
as complex poles.

In a similar manner, the numerator of equation (16) can be expressed in terms of its roots
and leading coefficient as:

n , 1
iz=:0 [Fi]s'|| = cz TT (s+2)) (18)

1=1

13
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where Z represents the complex roots of the numerator and CZ is the leading coefficient.
These roots are the zeros of equation (16). In the QR program, the zeros of the transfer
function are obtained by using the CRAMER REPLACE control card in conjunction with
the COMPUTE ZEROS control card.

Once the zeros and poles have been calculated, the transfer function for gy is obtained from
the FORM RATIO OF POLYNOMIALS control card. In the process of forming this ratio,
pole-zero pairs may be cancelled (removed from the transfer function) according to the
criteria specified by the CANCEL control card. A pole-zero pair is cancelled if either of the
following two conditions is met: (1) if the pair can be made to fit within a rectangle of a
specified size, or (2) if the ratio of the magnitude of the vector between the pole and zero to
the average distance from the origin is less than a specified value. Figure 3 illustrates the
cancellation process.

16 IMAGINARY AXIS
P1 S10.
Z, Py
v~ 1
X
| |
l_o
29

Cancel specifications:
Maximum real difference = 2.
Maximum imaginary difference = 3.

Maximum ratio =.15

-10.
REAL AXIS

() P2 and 22 will cancel by difference test, i.e.,
REAL (P2) -REAL (22)< 2.
IMAGINARY (P2) -IMAGINARY (22)< 3.

[ ) P4 and 24 will cancel by difference test
® P1 and Z1 will cancel by ratio test, i.e.,
1.6/5(10.9 + 12.2)< .15

L4 P3 and Z3 will not cancel

Figure 3. — Cancellation of Poles and Zeros



The leading coefficient for the transfer function is formed from CZ and CP and any
additional zero and pole gains input by the user using the DC GAIN control card.

Leading Coefficient = (CZ /CP)* DC Gain (19)

where DC Gain is the product of zero gains input divided by the product of the pole gains
input.

4.4 EIGENVALUE CALCULATION
The QR program obtains the eigenvalues of a matrix polynomial in two steps. First, the

order of the determinant of the matrix polynomial is reduced by extracting any common
factor (leading coefficient) and all obvious roots in s

m
n . —
2 [E]s'|| =coer IT (s+y) [Fe1 (20)
1= 0 i=1
J
where:
COEF = leading coefficient of the matrix polynomial determinant
I = obvious roots of the matrix polynomial determinant
I[F(s)]l = remaining determinant after reduction

An initial reduction of the matrix polynomial determinant is achieved using the various
mathematical properties of determinants. Appendix A of this document discusses these
properties and illustrates the initial reduction process performed in QR.

After completion of the reductions, the remaining matrix polynomial, F(s), will be trans-
formed to eigenvalue form. To accomplish this, the reduced matrix polynomial is expanded
into a set of equations which have no derivative of s higher than first order.

[[AO] + s[Al]:] fy} =0 (1)

This is accomplished by introducing auxiliary equations which relate the higher orders of s
to the first order of s . Multiplying (21) by the inverse of Al’ then the set of equations
become

[[A'O] + s[I]:I v} =0 (22)

15
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The roots of the determinant of expression (22) completes the eigenvalue process. These
roots are obtained using the QR algorithm (ref. 3). The reduction of the order F(s) and the
normalization of the first order matrix are described in Appendix A.

Combining the obvious roots r; with those extracted from F(s) and denoting the total set of
eigenvalues as 7\j, then equation (20) can be written as

n . m'
= Fi]sl = COEF T (s+%)) (23)
1= j= 1

where m' equals the number of obvious roots plus the roots of I[F-(s)]l .

Several related quantities are calculated from each eigenvalue

(AJJ = l
“i
f. =—
J 2
Real ( )
G (24)
J
where
>‘j = jth complex eigenvalue
w; = jth undamped frequency in rad/sec
fj = jth undamped frequency in hertz

S‘j = jth damping factor
4.5 STATE SPACE FORMULATION

The QR program has the option of transforming linear, constant coefficient, equations to
state variable form. The state variable form has many applications in controls engineering,
particularly in optimal control schemes. Using the state variable option, the user can trans-
form the basic set of polynomial equation in s (see fig. 1)

[F®)] {a}) = {U(s)) (25)



into two sets of equations

{x} = [Al {x} + [BI{U} (26)
and

y = [C] {x} + [D] {U} (27)
where:
[F(s)] = matrix polynomial in s (equation (1)) of size m x m
{q} = column vector of variables of size m x 1

{U(s)} = vector polynomial in s (equation (1)) of sizem x 1

[A] = state variable coefficient matrix of size n x n

[B] = state variable input matrix of size n x m

[C] = output matrix of state variables of size k x m

[D] = output matrix for inputs of size kK x m

{x} = column vector of state variables of size n x 1

{y} = column vector of output variables (composed of all of the q's and

possibly some of the derivatives of the q's) of size k x 1
The notation used in equations (26) and (27) is compatible with reference 7.

The method used to transform the set of matrix polynomial equations (25) to first order
form is similar to the second part of the eigenvalue solution process as explained in section
4.4 . In the state variable formation, however, the right-hand side, U , must be retained. A
detailed description of the reduction process is given in Appendix B.

4.6 FREQUENCY RESPONSE CALCULATION

The QR program calculates the frequency response function for any system variable, Qs
based on the transfer function formulation discussed in section 4.3. The transfer function
for q; can be written as

K

i=1

H (s + Zi)
nl (s + Pj)

J=

T(s) = (28)

17
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where:

Zi = complex zeros of T(s)
Pj = complex poles of T(s)
K = gain or leading coefficient of T(s)

For equation (28), the frequency response quantities are computed in the following
manner. First the substitution s =jw is made, then a starting frequency value of the
complex operator s is picked such that it is two decades below the smallest eigenvalue. (If
there is a4 pole or zero at the origin, the starting frequency is 0.) The frequency associated
with any eigenvalue is always the complex absolute value of it (see eq. (24)).

The magnitude, magnitude expressed in dB, frequency (in hertz) and phase (rad) are
calculated for all values of w selected during the frequency response calculation. The
following equations show each of these respective calculations.

Magnitude = | T(5) |5 = jo, (29)

Magnitude in dB = 20 log| g (Magnitude) (30)
fo Y

2w GD

Phase = Tan | (32)

Additional values of frequency are picked in an ascending order such that the magnitude
change (equation (30)) from one frequency step to the next frequency step does not exceed
2 dB. In addition, the phase change (equation (32) ) from one frequency step to the next
frequency step cannot exceed 5 degrees. The last value of frequency used is normally two
decades higher than the frequency of the highest frequency eigenvalue. It is possible
however, that for certain transfer functions, T(s), that a frequency of this value cannot be
attained because the QR program only allows 1000 frequency data points to be selected.
This condition is indicated by diagnostic message if it occurs.

Once the arrays of w, f, gain, dB and phase have been calculated, they are searched for gain
and phase margin. Interpolation is provided when requred. Frequency response results can
be printed and plotted (Bode and Nyquist plots) when appropriate options are selected by
the user.

4.7 POWER SPECTRAL DENSITY ANLAYSIS

Section 4.6 described how a frequency analysis is performed using the poles and zeros that
the user designates during his problem solution. All of the frequency response paths in the
program can be extended to include power spectral density (PSD) analysis calculations.



When the PSD calculations are made in QR, the transfer function being used is modified by

the gust spectrum,

K - , (s+ zi)

T@) = (24w ) /2 i1
IT (s+F)

=1

and the power spectral density of the response becomes

¢ (w) = T'(W)T*(w)

(33)

(34)

where T*'(w) is the complex conjugate of T'(w). The gust power spectrum is given by the

equation
2
L L
o2 (o () )
\% \Y
Byw) = T N2 o\
< 1+K;y (—) w > Y
v
where:
w = frequency in radians/sec
L = characteristic length
\Y% = freestream velocity of airplane (true airspeed)
Oy = RMS level of the turbulence

x,y,Kj, Ky, k3 = spectrum coefficients

The units of ¢>g(w) are (velocity)z/hertz.

(35)

19
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Typical examples of Von Karman forward, lateral, and vertical gust spectrums are

1

® (w) =40 % (L./V .
ugw a, (u )rl+1'7929 (Lu/V) 2,2 5/6
N i
= B
_ 1v) 242
b, @ - 20 (1Y) 1 +47811 (L,/v) 2(.02_ .
1 +1.7929 (Lv /v) w
1 agsn (Ly/v) 2 2|
® (w) =20.2(L/V W -
wgw Oy (w > L+ 1.7999 (LW/V> 2, ]11/6
0x2 = f°° P(w) dw

0
Thus, the user might initialize a forward gust with:

o,=1.

u L,=2500. V=2620.

x=5. y=6. K;=2. Ky=0. K3=1.7929.

For lateral and vertical gusts the variables might be initialized to

o=1. L=2500. v=2620. x=11. y=6. K;=1. K,=47811 K,=1.7929.

3

The logic used for determining the frequency distribution for the power spectral density
calculation is the same as that used in the frequency response calculation discussed in
section 4.6. The magnitude of the PSD, the magnitude in dB, frequency in hertz and
percent PSD are calculated for all values of w selected during the PSD response calculation.
The following equations show each of these respective calculations:

Magnitude = |T'(w)| IT*"(w)| (36)

Magnitude in dB = 20 log g (Magnitude) 37D
)

. (38)



w ]
f T'(w) TY (w) dw

Percent PSD = 0 (39)
w :
[ ™ T T (@) do
0
where w_. = maximum frequency obtained using the criteria discussed in section 4.6.

m

Once the array of w, f, magnitude, dB and percent PSD have been calculated, they are
printed or plotted depending on the options selected by the user.

4.8 TIME RESPONSE CALCULATIONS
4.8.1 TIME RESPONSE BY METHOD OF RESIDUES

QR computes time responses by determining the inverse Laplace transform of the transfer
function

n
IT

T(s) = —i=1 (40)
IT

i=1
where:
m Zz-n
Zi = the complex zeros of T(s)

o
1

the complex poles of T(s)
rﬁj > 1if Pj, is a multiple pole
The inverse transform is obtained by the method of residues.

The transfer function can be written in partial fraction expansion form as:

K,—
T(s) = K”ﬁ + K12_ +.. .+ il—-+
(s+P1) 1 (s+p1>m1-1 (S+P1)
+ “m1 — + sz_. + ... 4t ————Kmmm @D
(s+Pm)mm <s+Pm)mm'1 (s+Pm)
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The residues K1, Ky, - . ., K,;1 can be found thfough the usual procedure for single poles.
To evaluate Kl 1’ both sides of equation (5) are multiplied by (s + Pl)' The complex
operator s isset to -Pl and the polynomial expansion of the zeros array evaluated with

S='PI.
n
k IT (s + ;)
i=1 S=-P1
K; = = = 42)
11 m m
(P +Py) ™2 . (P Py )T
Analogous procedures are used to solve for K5, .. ., Kmr Expression (41) can be written
at this point as:
K,—
K12 . K13 N N Im, N
+p )17 yp)M2 T (s Py
S ] (S l)
Kon Kom, K, 9
———"5_1+...——+...+ ﬁ-1+
(S+P2) 2 (S+P2) (5+Pm) m
K — .
MTm_r - Kn Ky K “3)
<S + Pm) (s + Pl)ml (S + P2>m2 (s + Pm)mm

where the residues on the left side are unknown, and those on the right have been evaluated.

For each unknown residue, a complex frequence operator s is selected and substituted into
equation (43). The unknown residues are then determined numerically by solving the result-
ing set of simultaneous linear equations.

After all the residues in equation (41) are known, the time response is:

my-1 m,-2

Pt
q, (t) = — + = + ... + K= } el
k Tm]—1> | (7,-2)! Imy
m,_ -1
Kpp ttm -P_t
+ ... + -———-— b Kn”'ﬁ (] (44)
(mm-l)! m
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4.8.2 TIME RESPONSE WITH TAU

Designated forcing functions can be turned off after a specified time interval, by using the
COMPUTE TIME RESPONSE WITH TAU control cards. To illustrate this QR capability
consider the one-minus cosine forcing function shown in figure 4.

1-cos(2vr), 0< t < 7
fit) =
0 ,t>T

w = 2n/T

TIME, t

Figure 4. — A One-Minus Cosine Forcing Function

If the one-minus cosine function is represented by the Laplace transform

w2

f(s) = 5(—2_5> (45)

s“tw

the input function is periodic and undamped. However, the desired input is a signal which
is zero after the first period.

To achieve this effect, QR solves the time history of the desired response based on the zeros
and poles of the periodic forcing function. The time history is then adjusted at t=7 to
reflect the forcing function cutoff.

q(t) = q(t) t<r

() = qp(t) - qt-7) 7St <o (46)

where
qi(t) = time response of the desired output quantity due to the periodic function

4.8.3 TIME RESPONSE FOR FORCING FUNCTIONS THAT DO NOT HAVE SIMPLE
LAPLACE TRANSFORMS

The QR program options that perform frequency response, PSD response, and time response
calculations all utilize a user-formed ratio of polynomials. It is often desirable to find the
time response for one of these transfer functions when an irregular forcing function is
applied. The COMPUTE CONVOLUTE control card computes a time history by evaluating
the expression:

t
qy() = f h(t) f(t-7) dr 47
0
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where:

the response of a system excited by an inpulse

h(t)

f(t)

an aribitrary forcing function described by a set of data points

In QR the transfer function is formed by the FORM RATIO OF POLYNOMIALS using the
poles and zeros of the system due to a unit impulse input. The inverse Laplace transform is
calculated to obtain the impulse response function h(t). The forcing function, f(t), is
initialized by using the FORCING FUNCTION control card. f(t) should be input to the QR
program so that its range is from time equals zero to the final time specified on the TIME
INTERVALS data card. The time increment input on the TIME INTERVALS card should
be one-tenth of the period of the highest frequency in the transfer function.

4.9 UNSTEADY AERODYNAMIC OPTIONS

The QR program has the capability of performing analyses upon systems that employ
unsteady (frequency dependent) aerodynamics. The complex air force matrices as a
function of reduced frequency must be supplied from a source external to QR. The user
options include both frequency response analyses (BDOE/NYQUIST) and flutter analyses
(V-w,V-g).

QR assumes that the equations of motion with unsteady aerodynamics are in either of two
forms:

[[Ms] s>+ [Cg] s + [K] -—;—ep v2 [El(k)ﬂ {q) = {F) (48)

2
[[Ms] s* + [Cg]s + [K] + —‘;— [Ez(k)]:l {a}y = {0} (49)

where:

[Ms] consists primarily of generalized mass and control system elements
[Cz] consists primarily of structural damping and control system elements
[KZ'] consists primarily of generalized stiffness and control system elements

[El(k)] is a complex airforce matrix which when multiplied by the freestream dynamic
pressure becomes an aerodynamic stiffness matrix

[Ez(k)] is the complex airforce matrix mormalized by (—kz)(i.e., [E2(k)] = [El(k)] /-kz);
when multiplied by k2, [Ez(k)] becomes an aerodynamic inertia matrix



p is the freestream fluid density
V is the freestream velocity (e.g., true airspeed)
€ is a dimensional correction factor of value unity unless otherwise specified

I" isan airforce coefficient relating the airforce matrix to a specific flight condition
and to the dimensions of the system (non-dimensionalizing factor)

k is the reduced frequency associated with each airforce matrix <= wbr/ V)
w is the circular frequency of the response

b. is the reduced frequency reference length

r
s is the Laplace transform variable (s = jw)

{q} are the generalized coordinates and dependent variables of the system
{F} is a force vector array

The QR program has the capability of storing up to three independent inputs. A closed-loop
response can be obtained for each column vector individually.

4.9.1 FREQUENCY RESPONSE

The frequency response option for the equations of motion with unsteady aerodynamics is
based on equation (48). Since El(k) contains frequency dependent aerodynamics, roots for
a unique transfer function for the entire frequency spectrum cannot be determined directly
from the equations of motion. Consequently, the response must be evaluated at each

frequency of interest. The aerodynamic stiffness matrix must correspond to that frequency.

If the response is computed for a sufficient number of frequency values, a response in the
form of BODE/NYQUIST can be obtained.

The closed-loop response for an independent forcing vector { F} is obtained by a classical
method of solving a set of non-homogeneous complex linear differential equations. If an
open-loop stability analysis is desired for a homogeneous set of equations, a variation of the
simultaneous solution approach is employed by QR.

In order to understand how QR treats the unsteady aerodynamic case, it will be useful to
review how it handles the non-frequency dependent case. The QR standard method (no
unsteady aerodynamics) for computing open-loop poles and zeros follows from equation
(11) rewritten

F(K, s)=0=P(s) + KZ(s) (50)
or

[F(K, 9] = [Fy)] + K[F,0s)] (51
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For a single input/single output linear response, the gain constant K must lie solely along a
single row or along a single column. The open-loop poles are the roots of [Fp(s)j and
the open-loop zeros are the roots of [Fz(s)] .

Fa“ ajp -.. ayp+Kbyo.oap,
321 322 P 32m+Kb2m e a2n
|F&, syl =] - : : (52)
fnl agy - anm+Kbnm R . _J
211 ajp --- qp--- 4
321 2122 e 32m e a2n
Fell-l|
__anl a0 ... Aym - .- ann_
— —
aj ajpy .- blm ce.ooapy
321 322 RN b2m P 32n
Fell-. (54
a 1 a 2 .- b a
| °n n nm nn_|

This method is also valid if all gains are located along one row since
]} = |[a] 7] (55)

QR applies Cramer's rule in these computations.



When unsteady aerodynamics are included in the analysis, QR uses a simultaneous
equation solution approach which is equivalent to the Cramer's rule approach. If the gains
are located along one column, for example

[, ,
ap) Ay (a1m+Kb1m) SRR T ai
ay) 423 (azm”K"zm) R T )
(56)
= {O}
an1 ahy - - - (anm+Kbnm) P T an

QR solves for qp, after transferring all gain elements to the corresponding locations in the
right-hand side column vector and setting s = jw.

[ , ]
a” a1 e alm - - .+ @ip a1 Kblm
471 322 .. a2m e a2n Q2 szm
= 37)
L anl an2 . anm Coe ann qn Kbnm
Equivalently, by Cramer's rule,
Z(s)
= 58
9m ™™ ps) 9

s=jw

If the gains are located along one row, QR forms the transpose of the characteristic matrix.
The gain location elements again become located along one column and the above procedure
applies.

4.9.2 FLUTTER ANALYSIS
QR can perform flutter response analyses on homogeneous equations of either of the forms

(48} or (519) The latter has been the most frequently used equatlon By substituting
, equation (49) can be written

l:[[Ms:l '%[Ez(k)_ﬂ 2 + [CS—_I s + [Ksﬂ ta} = {0} (59)
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Only roots in the proximity of the imaginary axis are valid for resulting flutter analysis
interpretations. QR roots the characteristic matrix of equation (48) directly to get the
flutter solution. :

QR computes the flutter velocity, frequency, and damping values from the flutter roots in
the form

fp = ABS(A)/2 flutter frequency

¢ = Re()/2fg damping ratio

g = -2¢ flutter damping ratio
VE=2 brfF/k (for small damping)

where k is the reduced frequency associated with the airforce matrices.




5.0 PROGRAM STRUCTURE AND DESCRIPTION

The QR program was written as a series of independent subprograms and then integrated
into a single program with several levels of overlays. The QR program can be divided into
five different analyses: eigenvalue rooting, time response, frequency/PSD response, root
locus, and unsteady aerodynamics. Each major computational task is generally built into
one overlay of the program. '

Figure 5 shows a block diagram of the overlay structure in QR. The last letter of the overlay
block name generally signifies what is actually done during execution. The M in the QRM
stands for main executive program; T in QRT stands for time response analysis; R in QRR
stands for root locus; U in QRU stands for unsteady aerodynamics. QRF calculates
frequency/PSD response.

For detail the task of each overlay see Linear Systems Analysis Program 1224 (QR),
Volume II (ref. 8).

5.1 QR PROGRAM CONTROL AND EIGENVALUE ROOTING

The QRM, 0, 0 overlay is the QR main program and its purpose is to control the tasks that
are undertaken. QR reads a data card from the INPUT file and determines if a valid
command has been input. Assuming a valid command has been input, this overlay will do
one of two things: (1) branch to another subroutine or position in the main program (QR)
where additional input data is read or analytic steps are performed, (2) call another over-

lay to perform time response, frequency response, root locus plooting, V-g analysis plotting,
or unsteady aerodynamics options.

The principal analytic step undertaken in the QRM, 0, O overlay is eigenvalue rooting. In
addition, this overlay: (1) controls looping for phase gain locus and calculation of open-loop
zero and poles; (2) controls looping for altitude and reduced frequencies when performing
V-g analysis; and (3) calculates the polynomial coefficients associated with a given set of
eigenvalues.

The QRM, I, 0 overlay calculates constants that are to be used in QR, prints and identifica-
tion page on the output file (TAPE®6), sets up pooled program buffers, and reads the first
QR data card from the input file (TAPES).

The QRM, 7, 0 overlay is the last logical step executed in the QR program. The maximum
field length used during the QR execution is calculated and printed on the output file
(TAPEG6) and the dayfile, the SC4020 plot buffer is filled and emptied onto disk unit 99,
local scratch files TAPE90, TAPE91 and TAPE96 are returned, and the CRU cost of the
QR execution is calculated.

5.2 TIME RESPONSE CALCULATIONS
Overlay QRT, 2, O calculates time response given a polynomial transfer function (Z(s)/P(s)),

time intervals, and print/plot instructions. All of this input information is read from data
cards or calculated in the QRM, 0, 0 overlay and passed into QRT, 2, 0 by named common.
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QRM, 0,0
Main
executive
|
[ ] l I [ [
QRM, 1,0 QRM, 7,0 QRT, 2,0 QRF, 3,0 QRR, 4,0 QRR, 5,0 QRU, 5,0
Program Time response Frequency Fiutter locus Unsteady
Initialization completion response Root locus plotting airforce
coefficients
QRU, 6,0 QRU, 7,0
Unsteady Compute
frequency flutter 2
response response
QRU, 6, 1 QRU, 6, 2 QRU, 6, 3 QRUSG, 6 QRU, 7, 1 QRU, 7,3 QRU, 7,5
Data Frequency Response Printing Data Printing
initialization limits evaluation and initialization Eigenvalues and
plotting plotting

Figure 5. — QR Overlay Structure




5.3 FREQUENCY RESPONSE AND PSD CALCULATIONS

The QRF, 3, 0 overlay calculates frequency and PSD response given a transfer function
(Z(s)/P(s)), gust spectrum, and print/plot instructions. All of this input information is read
from data cards or calculated in the QRM, 0, 0 overlay and passed into QRF, 3, 0. by named
common.

5.4 ROOT LOCUS AND V-g PLOTTING

Overlay QRR, 4, 0 generates root locus plots given Z(s), P(s), root locus eigenvalues, and
plot specifications. All of this input information is read from data cards or calculated in the
QRM, 0, 0 overlay and passed into QRR, 4, 0 by named common.

If QR is performing a COMPUTE FLUTTER AND ROOT LOCUS analysis during execution
of this overlay, the Z(s) and P(s) complex arrays are written to disk file TAPE96 for eventual
processing in overlay QRR, 5, 0.

QRR, 5, 0 generates V-g plots given eigenvalues, k-values, reduced frequency reference
length, and plot specifications. All of this input information is read from data cards or
calculated in the QRM, 0, O overlay and passed into QRR, 5, 0 by named common.

5.5 UNSTEADY AIRFORCE FREQUENCY RESPONSE
AND FLUTTER CALCULATIONS

The frequency response and flutter calculations using unsteady aerodynamics are performed
by overlays QRU, 5, 0 through QRU, 7, 5. These overlays read the unsteady aerodynamic
force matrices from tape, form the equations of motion, and perform the necessary calcula-
tions for frequency response or flutter solutions.
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6.0 COMPUTER PROGRAM USAGE

The program was designed for use on the CDC 6600. The machine requirements to execute
QR are: :

Card Reader Read control card and card data.

Printer Print standard output information, optional intermediate calculations, and
diagnostic messages.

Disk Storage All magnetic files not specifically defined as magnetic tapes are assumed to
be disk files.

Tape drive For permanent storage of data. Magnetic files are copied to and from
magnetic tapes with control cards before and after program execution.

The program QR is written in FORTRAN and may be compiled with either the RUN or
FTN compiler. QR may be executed on either the KRONOS 2.1 or NOS 1.2 operating
systems.

6.1 CONTROL CARDS

The following list is a typical set of control cards used to execute QR using the absolute
binaries from the program's master tape.

Job Card
Account Card

REWIND (MASTER) its master tape
COPYBF (MASTER, QRM)

COPYBF (MASTER, QRF)

COPY BF (MASTER, QRR)

COPYBF (MASTER, QRT)

COPYBF (MASTER, QRU)

RETURN (MASTER)

Prepare needed
. input files
QRM. { Execute QR

{Save desired
output files

REQUEST (MASTER, F=1, LB=KL, VSN = 66xxxx) %Rctrlcvc the program from

EXIT.
DMP (O, field length)
- -- End-of-Record

[
f—

Card Input
Data

- - - End-of-file



The following list is a typical set of control cards used to execute QR using the relocatable
binaries from the program's master tape.

Job Card
Account Card

REQUEST (MASTER, F=1, LB = KL, VSN = 66 xxxx) Retrieve the program
REWIND (MASTER) from its master tape
SKIPF (MASTER, 5)

COPYBF (MASTER, RELQR)

RETURN (MASTER)

{ Retrieve the Dyloflex
. library named DYLIB
LOAD (RELQR, DYLIB) { Load QR

NOGO

{Prepare needed input
files

QRM. { Execute QR

{Save desired output files

EXIT
DMP (0, field length)
- - - End-of-record

pa
pa
Y

Card Input
Data

- - - End-of-file

6.2 RESOURCE ESTIMATES

The computer resources used (core requirements, tapes, printed output, central processed
seconds, etc.) are a function of the problem size and the program options used.
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FIELD LENGTH

The field length (core) required by QR is dependent upon the problem size.

The equation to calculate the field length is

Field length = 105500 + ((matrix size) x (Power of s) + 1)) g

TIME ESTIMATE

The central processing time (cp seconds) required is dependent upon the options chosen and
the ‘options chosen and the problem size. The program prints the time required by various
operations. It is suggested that 100 seconds be used as a first guess and that it be increased if
required.

PRINTED OUTPUT

Output is controlled by the user by use of various print options and selection of the print
interval for various outputs.

Pages of output = 2 + number of poles computed/100
+ number of zeros/100
+ number of points for a time history or frequency response/150
+ number of printer plots requested.

Note: This formula is based on a page size of 11 inches by 15 inches and a printing density
of 6 lines per inch.

A sample of QR printed output is included in section 7.5.
6.3 CARD INPUT DATA

The QR program accepts data in a menu format, the description of input data is arranged in
this format and not in the card set format.

All references to SC4020 plotting in this program are for Boeing use only.

FORMAT OF CARD INPUT DATA
All card data is read in fixed fields (specific column of the cards). The required card columns
are defined next to each keyword or variable. The following conventions are used through-
out the program:
e All floating point variables are read with format E12.5 or E14.7.

® All integer variables are read with the format 12, 15, or 110.

® All hollerith variables (keywords, etc.) are read with the format 8Al0.



All underlined capital characters contained in the keyword/variable field of the input card
data must be left justified and punched in the card columns specified in the column field of
the input card data. Note that most keywords have an abbreviated form. This form is given
in brackets ({ xx }) after each keyword.

For data which is to be read from magnetic file, the user may use tape numbers 1 through
20, except for numbers 5, 6, 7 and 10.

6.3.1 CASE INITIALIZATION
BEGIN Cards

The first card of a case must be a BEGIN control card. The BEGIN card may be used as many
many times as required to initialize new cases.

BEGIN card-1

|

[ ] Kevworo/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 BEGIN {B} | 8A10 Keyword required to initialize a new execution
BEGIN card-2
This card is optional
KEYWORD
CoLS. VARIABLE FORMAT DESCRIPTION
1-80 TITLE 8A10 The title input by the user will appeér in the printed
output. A11 80 columns are available for use.
BEGIN card-3
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 MATORD I5 Number of rows of matrix.
6-10 MATDE I5 Highest power of s.
11-15 NGR 15 Maximum number of eigenvalues expected (default = 60).
16-20 NODIAG 15 If NODIAG = 0, do not print diagnostic.
If NODIAG = blank, print diagnostic.
21-25 UNITS 15 If UNITS = 0, English units.
If UNITS = blank, Metric units.

The above cards will print the title of the problem and the size (order) of the matrix input.
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Comment Cards

Any card which is distinct from the control cards or a sequence name will be printed with the
the following words written to the right:

(THIS IS A COMMENT CARD)

An incorrect control card (e.g., misspelled) will also be interpreted as a comment card.

6.3.2 MATRIX ELEMENT OPERATIONS

This section describes the input cards required to perform the types of matrix operation
listed below. Note that the term ''matrix polynomial'' used throughout this document means
a matrix whose elements are coefficients of a polynomial in the Laplace variables (see

section 4.1).

e MATRIX

e REPLACE

¢ MATRIX COMPLEX

e REPLACE COMPLEX

e CONTINUOUS MATRIX

® READ MATRIX TAPE

® VECTOR

e REPLACE VECTOR

e READ VECTOR TAPE

® CRAMER REPLACE

® PRINT

MATRIX control card permits values to be read into the
matrix polynomial.

REFPLACE option permits revisions and additions to be made to
the matrix.

MATRIX COMPLEX used to input a complex matrix
polynomial.

REPLACE COMPLEX option permits revisions and
additions to be made to the complex matrix.

CONTINUOUS MATRIX permits card input of a matrix
partition for a particular power of s.

The READ MATRIX TAPE option permits magnetic file
input of a matrix partition for a particular power of s.

VECTOR option reads data into the vector polynomial.

The REPLACE VECTOR option permits revisions and
additions to be made to the vector.

The READ VECTOR TAPE option permits magnetic file
input of a vector partition for a particular power of s.

The vector polynomial stored in core is inserted into the
desired column of the matrix polynomial by use of the

CRAMER REPLACE options.

This control card causes the matrix polynomial to be printed.



PUNCH

PRINT PARTIAL

MATRIX

SPACE TAPE

DELETE

DELETE AND REDUCE

TRUNCATE

TRUNCATE AND
REDUCE

BODY STATIONS

SENSOR

This control card causes the matrix polynomial to be
punched.

This control card allows the user to selectively print portions
of his saved matrix.

This control card enables the user to position a magnetic file.

This control card is used to eliminate the dynamic character-
istics of selected elastic modes while retaining their static
properties in the equations of motion for purposes of a static
elastic solution.

This control card has the same effect as DELETE card except
matrix size is reduced after dynamic characteristics have been
eliminated for selected modes.

This control card is used to delete selected rows and columns
in matrix equations.

This control card has the same effect as TRUNCATE card
except the matrix size is reduced after the rows and columns
have been zeroed.

This control card is used to read in the body station locations
at which the sensor equations are defined. '

SENSOR reads the sensor equations into a specified row of
the matrix polynomial.
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MATRIX Cards

Each element of the square matrix polynomial has four characteristics; row, column, power
of s, and value.

The MATRIX control card permits values to be read into the matrix polynomial. Zero
elements do not have to be input. Each value is individually addressed by its row, column,
power of s, and value in the matrix polynomial. A maximum of four elements may be input
on each card. A field may be left blank on a card if less than four elements are desired.

MATRIX card-1

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-80 MATRIX 8A10 Keyword indicating that real elements of the matrix polynomial
{M} will be read from cards.

MATRIX card-2

: KEYWORD/
COoLS. VARIABLE FORMAT DESCRIPTION
3
1-2 I1 12 Row
3-4 JJd 12 Column
e 1st Element
5-6 KK 12 Power of s
7-20 U(II,Jdd,KK) E14.7 Value
J
N
21-22 II 12 Row
23-24 JJ 12 Column
p 2nd Element
25-26 KK 12 Power of s
27-40 | U(II,JdJ,KK) E14.7 Value J
3
41-42 11 12 Row
43-44 JJ 12 Column
r 3rd Element
45-46 KK 12 Power of s
47-60 | U(II,JdJ,KK) E14.7 Value
61-62 II 12 Row
63-64 Jd 12 Column
. q 4th Element
65-66 KK 12 Power of s
67-80 | U(II,JJd,KK) E14.7 Value




Repeat card-2 as many times as required to define the matrix polynomial. End input of data
with a blank card.

If an element address (i.e. row, column and power of s) is listed more than once, the value
placed in the matrix polynomial location will be the last value read on the data cards. Cards
are read sequentially, and fields are read from left to right. '

A blank card after the MATRIX card is a legal operation. No data would be read in.
However, the matrix polynomial would be set to zero and the null matrices would be printed
for each power of s.

REPLACE Cards

The REPLACE option permits revisions and additions to be made to the matrix polynomial.
If an element had previously been input (e.g., MATRIX control card) the REPLACE control
card could be used to override that element.

REPLACE card-1

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 REPLACE 8A10 Keyword indicating that values for real elements of the matrix
{R} polynomial which are to be replaced will be read from cards.
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REPLACE card-2

KEYWORD/

CoLS. VARIABLE FORMAT DESCRIPTION
_ 3
1-2 II 12 Row
3-4 Jd 12 Column
1st Element -
5-6 KK 12 Power of s
7-20 U(II,d9,KK) E14.7 Value )
=
21-22 11 12 Row
23-24 JJ 12 Column
2nd Element
25-26 KK 12 Power of s
27-40 | U(II,JdJ,KK) E14.7 Value j
=
41-42 11 12 Row
43-44 JJ 12 Column
3rd Element
45-46 KK 12 Power of s
47-60 | U(I1,dJ,KK) E14.7 Value
61-62 11 12 Row
63-64 Jd 12 Column
q 4th Element
65-66 KK 12 Power of s
67-80 | U(II,JJ,KK) E14.7 Value

Repeat card-2 as many times as required to completely define the matrix elements to be
replaced. End input of data with a blank card.




MATRIX COMPLEX Cards

This control card is used to input a complex matrix polynomial. The row, column, power of
s, real part, and imaginary part of each complex number must be listed on the data cards.
Either one or two complex numbers may be listed per card.

MATRIX COMPLEX card-1

{MC}

KEYWORD/
“cOLS. VARIABLE FORMAT DESCRIPTION
1-80 MATRIX COMPLEX | 8A10 Keyword indicating that complex elements of the matrix polynomial

will be read from cards.

MATRIX COMPLEX card-2

KEYWORD/ -
coLs. VARIABLE FORMAT DESCRIPTION
1-2 11 12 Row )
3-4 JJ 12 Column
5-6 KK 12 Power of s
y Complex Element #1
7-20 | U(IL,JJ,KK)p, | E14.7 Real part
21-26 6X Blank
27-40 | U(II,Jd,KK) . | E14.7 Imaginary part |
.
41-42 11 12 Row
43-44 JJ 12 Column
45-46 KK 12 Power of s
g Complex Element #2
47-60 | U{IT1,09,KK)p. | E14.7 Real part
61-66 6X Blank
67-80 | U(II,Jd,KK);, | E14.7 Imaginary part )

Repeat card-2 as many times as required to completely define the complex matrix. End

input of data with a blank card.
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REPLACE COMPLEX Cards

This control card has the same effect as the REPLACE control card but utilizes the format

of the MATRIX COMPLEX options.

REPLACE COMPLEX card-1

{RC}

polynomial which are to be replaced will be read from cards.

KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-80 REPLACE COMPLEX { 8A10 Keyword indicating that values for complex elements of the matrix

REPLACE COMPLEX card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
3
1-2 11 12 Row
3-4 JJ 12 Column
5-6 KK 12 Power of s
A Complex Element #1
7-20 | U(IL,J0,KK)p. | E14.7 Real part
21-26 6X Blank
27-40 | U(I1,dJ,KK); | E14.7 Imaginary part
-
41-42 11 12 Row
43-44 Jd 12 Column
45-46 KK 12 Power of s
g Complex Element #2
47-60 U(”,JJ,KK)Re { E14.7 Real part P
61-66 6X Blank
67-80 U(II,JJ,KK)Im E14.7 Imaginary part J

Repeat card-2 as many times as required to completely define the complex matrix elements

to be replaced. End input with a blank card.
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CONTINUOUS MATRIX Cards

The CONTINUOUS MATRIX control card permits input of a matrix partition for a particular
power of s. The partition must be square and is read into the upper left-hand corner of the
matrix polynomial. This option provides an alternate means for matrix input.

The elements of the partition, including zeros, must be contained on the cards in successive
rows. The second row begins in the field following the last element of the first row. A new
row does not necessarily start a new card.

CONTINUOUS MATRIX card-1

KEYWORD/ i
COLS. VARIABLE FORMAT DESCRIPTION
1-80 CONTINUOUS 8A10 Keyword indicating that elements of a matrix partition will be
MATRIX  {CON} read in a continuous manner from cards.

CONTINUOUS MATRIX card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 MTORD 15 Number of rows of square partition to be read from cards must be
less than or equal to the number of rows of the matrix polynomial.
6-10 MTDEG 15 Power of s corresponding to the partition.

CONTINUOUS MATRIX card-3

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-12 U(1,1,MTDEG) El12.5 1st element of partition.
13-24 | U(1,2,MTDEG) El2.5 2nd element of partition.
25-36 | U(1,3,MTDEG) El2.5 3rd element of pertition.
37-48 | U(1,4,MTDEG) E1l2.5 4th element of partition. .
49-60 | U(1,5,MTDEG) El2.5 5th element of partition.
61-72 1 u(1,6,MTDEG) £12.5 6th element of partition.

Repeat card-3 as many times as required to list all of the elements. A blank card is not
needed to terminate the reading of data.
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READ MATRIX TAPE Cards

The READ MATRIX TAPE option permits magnetic file input of a matrix partition for a
particular power of s. The partition must be square and is read into the upper lef-hand

corner of the matrix polynomial.

The maximum permissible matrix size on tape is 70 x 70. The power of s, tape number, and
tape positioning are input from data cards.

READ MATRIX TAPE card-1

KEYWORD/
COLS. VARIABLE FORMAT

DESCRIPTION

1-80 |READ MATRIX TAPE | 8A10

{RMT }

Keyword indicating that a matrix will be read from tape.

READ MATRIX TAPE card-2

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 NTAPE 15 Number of tape unit. If negative, the tape will be rewound before
any file and matrix skipping occurs.

6-10 NFILES 15 Number of end-of-files to skip. A minus number will backspace
the tape that many files.

11-15 NMAT I5 Number of matrices to skip past on tape. This number must be
positive.

16-20 MATDG 15 Power of s of the matrix to be read from tape.

21-25 NPRT I5 If NPRT = 0, print matrix read from tape.
If NPRT = 1, do not print matrix.

Repeat card-2 as many times as required to completely define all the matrix partitions to be
read from tape. End reading of matrices by inserting a blank card.

VECTOR Cards

The VECTOR option is similar to the MATRIX option. However, the VECTOR option reads

data into the vector polynomial.




VECTOR card-1

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-80 VECTOR 8A10 Keyword indicating that the eiements of a vector polynomial
{(v1 will be read from cards.

VECTOR card-2

KEYWORD/

caLs. _VARIABLE FORMAT _ ~ DESCRIPTION

A
1-2 d1 12 Row
3-4 2X Blank

p 1st Element
5-6 J2 12 Power of s
7-20 VEC(J1,J2) E14.7 Value

P
21-22 Jl 12 Row
23-24 2X Blank

4 2nd Element
25-26 J2 12 Power of s
27-40 | VEC(J1,J2) £E14.7 Value

<
41-42 Jl 12 Row
43-44 2X Blank

4 3rd Element
45-46 J2 12 Power of s
47-60 | VEC(J1,d2) E14.7 Value
61-62 Ji 12 Row
63-64 2X Blank

‘ 4th Element
65-66 J2 12 Power of s
67-80 | VEC(J1,J2) Ei4.7 Value )

Repeat card-2 as many times as required to completely define the vector polynomial.

The VECTOR cards may be used to input from one to three distinct vectors which can be
used for the closed-loop unsteady frequency response analysis. Each vector is stored as a
different power of s(i.e. vector 1 is s ** 0, vector 2is s ** 1 and vector 3 is s ** 2). Using
card-2 of the COMPUTE UNSTEADY FREQUENCY RESPONSE card set, the user can
extract the particular vector to be used. All vectors used in the unsteady frequency response
calculation are considered coefficients of s ** Q.
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REPLACE VECTOR Cards

The REPLACE VECTOR option permits revisions and additions to be made to the vector.
For example, if an element had previously been input by the VECTOR sequence, the
REPLACE VECTOR option could be used to override that element.

REPLACE VECTOR card-1

{RV}

polynomial

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 REPLACE VECTOR | 8A10 Keyword indicating that values for elements of the vector

which are to be replaced will be read from cards.

REPLACE VECTOR card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
h
1-2 Jl 12 Row
3-4 2X Blank
r ist Element
5-6 J2 12 Power of s
7-20 VEC(J1,J2) E14.7 Value
P
21-22 Jl 12 Row
23-24 2X Blank
2nd Element
25-26 J2 12 Power of s
27-40 | VEC(J1,92) E14.7 Value
<
41-42 Jl 12 Row
43-44 2X Blank
3rd Element
45-46 J2 12 Power of s
47-60 | VEC(J1,J2) E14.7 Value
61-62 Jl 12 Row
63-64 2X Blank
p 4th Element
65-66 J2 12 Power of s
67-80 | VEC(J1,J2) E14.7 Value ]

The replace vector polynomial is not initialized to zero.

Repeat card-2 as many times as required to completely define the vector elements to be
replaced. End input with a blank card.
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READ VECTOR TAPE Cards

The READ VECTOR TAPE option permits magnetic file input of a vector partition for a
particular power of s. The partition is read into the upper region of the vector polynomial.

READ VECTOR TAPE card-1

{RVT }

KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-80 |READ VECTOR TAPE | 8A10 Keyword indicating that a vector will be read from tape.

READ VECTOR TAPE card-2

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 NTAPE 15 Number of tape unit. If negative, the tape will be rewound
before any file and matrix skipping occurs.

6-10 NFILES 15 Number of end-of-files to skip. A minus number will backspace
the tape that many files.

11-15 NMAT 15 Number of matrices to skip past on tape. This number must be
positive.

16-20 MATDG 15 Power of s of the matrix to be read from tape.

21-25 NPRT 15 If NPRT = 0, print matrix read from tape.
If NPRT = 1, do not print matrix.

Repeat card-2 as many times as required to completely define all vector partitions to be read.

CRAMER REPLACE Cards

The vector polynomial stored in core is inserted into the specified column locations of the
matrix polynomial which is also stored in core by use of the CRAMER REPLACE option.

CRAMER REPLACE card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 CRAMER REPLACE | 8A10 Keyword indicating that the vector polynomial is to be placed

{CR}

in a specified column of the matrix polynomial.
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CRAMER REPLACE card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION o -
1-5 J I5 The column number of the matrix polynomial into which the
vector polynomial is to be placed,
6-10 L I5 If L = 0, insertion of column is temporary.
If L =1, insertion of column is permanent part of matrix
polynomial,

PRINT Card

This control card causes the elements of the matrix polynomial to be printed.

PRINT card-1

KEYWORD/

coLsS. VARIABLE FORMAT DESCRIPTION

1-80 PRINT 8A10 Keyword indicating that the matrix polynomial is to be printed.
{p}

PUNCH Card

This control card causes the elements of the matrix polynomial stored in core to be punched
on cards in the format of MATRIX card-2 (4(312, E14.7)).

PUNCH card-1

KEYWORD/

coLs. VARTABLE FORMAT DESCRIPTION

1-80 PUNCH 8A10 Keyword indicating that the matrix polynomial is to be punched
{pu} on cards.

PRINT PARTIAL MATRIX Cards

This control card allows the user to print portions of the matrix polynomial.

Only non-zero portions of the matrix specified by the user are printed. This format is con-
siderably less voluminous than the sequence initiated by the PRINT control card.
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PRINT PARTIAL MATRIX card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 PRINT PARTIAL | 8AT0 Keyword indicating that only part of the matrix polynomial
MATRIX is to be printed.
{PPM}

PRINT PARTIAL MATRIX card-2

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 I1 I5 Starting row position to be printed.

6-10 12 15 Starting column position to be printed.

11-15 13 15 Starting power of s to be printed.

16-20 14 15 Ending row position to be printed.

21-25 15 15 Ending column position to be printed.

26-30 16 15 Ending power of s to be printed.
SPACE TAPE Cards

This control card enables the user to move to a different position on a magnetic file.

SPACE TAPE card-1

KEYWORD/

COLS. VARTABLE FORMAT DESCRIPTION

1-80 SPACE TAPE 8A10 Keyword indicating that tape positioning data is to be
{81} read from cards.




SPACE TAPE card-2

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 NTAPE 15 Number of tape unit. If negative the tape will be rewound
before any file and matrix skipping occurs.

6-10 NFILE 15 Number of end-of-files to skip past. A minus number will
backspace the tape that many files.

11-15 NMAT 15 Mumber of matrices to skip past on tape. This number must
be positive.

DELETE Cards

This control card is used to eliminate the dynamic characteristics of selected elastic modes in
in matrix equations of motion. Static properties of the eliminated modes are retained. To
accomplish the elimination, all polynomial coefficients except constant terms in specified
columns are set to zero. This procedure eliminates particular modes but retains the residual

stiffness of the modes.

DELETE card-1}

KEYWORD/

COoLS. VARIABLE FORMAT DESCRIPTION

1-80 DELETE 8A10 Keyword indicating that the dynamic characteristics of specified
{DE} elastic modes are to be eliminated.

The following rule must be adhered to when using the DELETE control card:

® The only degrees of freedom which can be deleted are airplane elastic degrees of freedom.
The equations of motion are assumed to be of the following form:

where:

{F}
X1

[A]
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DELETE card-2

KEYWORD/
_COLs. VARIABLE FORMAT DESCRIPTION
1-5 M 15 The number of modes which are to be deleted.
DELETE card-3
KEYWORD/
| COLS. VARIABLE FORMAT DESCRIPTION
1-5 KFIX1 I5 The column number of the lst mode to be deleted.
6-10 KFIX2 15 The column number of the 2nd mode to be deleted.
11-15 KFIX3 I5 The column number of the 3rd mode to be deleted.
16-20 KFIX4 I5 The column number of the 4th mode to be deleted.
76-80 KFIX16 15 The column number of the 16th mode to be deleted.

Repeat card-3 as many times as required to list all modes to be deleted.

DELETE AND REDUCE Cards

This control card has the same effect as the DELETE control card, except the matrix size is
reduced after the dynamic characteristics have been eliminated from the selected modes.
The matrix size reduction is equal to the number of modes which are operated upon. After
rows and columns are removed, the remaining rows and columns are shifted up and to the

left. The remaining modes are renumbered after the reduction.
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Note: The DELETE AND REDUCE control card removes the designated rows and columns,
and elements of the remaining matrix are modified to account for the static stiffness of the
removed degrees of freedom. If the equations of motion represent a partition of a larger
system of equations,

the elements of the A, Al 25 and A2l partitions are modified. The elements of the A22
partition remain unchanged.

DELETE AND REDUCE card-1

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 DELETE AND 8A10 Keyword indicating that the dynamic characteristics of specified
REDUCE modes are to be eliminated and the remaining matrix reduced.
{DAR}

DELETE AND REDUCE card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 M 15 The number of modes which are to be deleted and reduced.

DELETE AND REDUCE card-3

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 KFIX1 15 The column number of the 1st mode to be deleted and reduced.
6-10 KFIX2 15 The column number of the 2nd mode to be deleted and reduced.
11-15 KFIX3 15 The column numbér of the 3rd mode to be deleted and reduced.
16-20 KFIX4 15 The column number of the 4th mode to be deleted and reduced.
76-80 KFIX16 15 The column number of the 16th mode to be deleted and reduced.

Repeat card-3 as many times as required to list all of the column numbers of the modes to
be reduced and deleted. A blank card is not necessary to end input.




TRUNCATE Cards

This control card is used to eliminate selected freedoms from the matrix equations. To
accomplish the elimination, all polynomial coefficients in the specified rows and columns
are set to zero. Following this action, the diagonal elements of the specified rows and
columns are set to unity.

The operation performed by this control card allows the user to selectively determine where
eigenvalues occur in the matrix equations. For example, if a user has an unstable root, he
can arrange a set of control cards which will reduce the matrix, calculate a set of eigenvalues,
reduce the matrix, calculate a set of eigenvalues, etc. Inspection of the printout received
from this execution should produce a set of eigenvalues that are all stable.

TRUNCATE card-1

KEYWORD/

COoLS. VARIABLE FORMAT DESCRIPTION

1-80 TRUNCATE 8A10 Keyword indicating that specified rows and columns will be
{TRU } deleted from the matrix polynomial.

TRUNCATE card-2

KEYWORD/
COLS. [ VARIABLE FORMAT DESCRIPTION
1-5 M 15 The number of rows and columns which are to be truncated.

TRUNCATE card-3

KEYWORD/
COLS. VARTABLE FQRMAT DESCRIPTION
1-5 KFIX1 15 The 1st row and column to be truncated.
6-10 KFIX2 I5 The 2nd row and column to be truncated.
11-15 KFIX3 15 The 3rd row and column to be truncated.
L76-80 ] KFIX16 15 ) The 16th row and column to be truncated.

Repeat card-3 as many times as required to list all of the row and column numbers of
freedoms to be eliminated.



54

TRUNCATE AND REDUCE Cards

This control card has the same effect as the TRUNCATE card, except the matrix size is
reduced after the rows and columns have been zeroed. The matrix size reduction is equal to
the number of rows and columns which are truncated. After the rows and columns are
zeroed, the remaining rows and columns are shifted up and to the left. The remaining
modes are renumbered after reduction.

TRUNCATE AND REDUCE card-1

REDUCE
{1AR }

KEYWORD/
COoLS. VARIABLE FORMAT DESCRIPTION
1-80 TRUNCATE AND 8A10 Keyword indicating that specified rows and columns will be deleted

from the matrix polyn-mial and the remaining matrix will be reduced.

TRUNCATE AND REDUCE card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 M 15 The number of rows and columns which are to be truncated and reduced.

TRUNCATE AND REDUCE card-3

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 KFIX1 15 The 1st row and column to be truncated and reduced.
6-10 KFIX2 I5 The 2nd row and column to be truncated and reduced.
11-15 KFIX3 IS5 The 3rd row and column to be truncated and reduced.
76-80 KFIX16 15 The 16th row and column to be truncated and reduced

Repeat card-3 as many times as required to list all of the row and column numbers of
freedoms to be eliminated.




AUTOMATIC INPUT OF SENSOR DATA

The next two sets of control cards, BODY STATIONS and SENSOR, allow the user to
automatically define the sensor equations needed for the desired control system modeling.
A matrix (or set) of sensor equations are read from magnetic file. Using the BODY
STATIONS cards, the user establishes a correlation between the row of the sensor data
input matrix and a body station (x reference axis system) location. The sensor body
station location required for the particular control system to be analyzed is defined by the
user on SENSOR card-3. Using the body station-sensor equation correlation defined earlier,
the QR program interpolates for the sensor equations at the required body station location.
The interpolated sensor cquation is then placed in matrix polynomial as indicated on
SENSOR card4.

BODY STATION Cards

This control card defines the body stations at which the incoming sensor equations are
defined.

BODY STATIONS card-1

KEYWORD/
COoLs. VARIABLE FORMAT ) DESCRIPTION
1-80 |BODY STATIONS 8A10 Keyword indicating that the body station locations for the sensor
B {BS equations being input will be read from cards.

BODY STATIONS card-2

KEYWORD/ o
coLs. |  VARIABLE FORMAT B DESCRIPTION
1-5 NBS 15 Number of body stations to be read( < 8)

BODY STATIONS card-3

KEYWORD/ - -
CcoLs. VARIABLE FORMAT DESCRIPTION
1-12 X(1) E12.5 Bc;dy station location of the 1°° sensor equation being read from tape.
13-24 x(2) E12.5 }Body station location of the 2nd sensor equation being read from tape.
61-72 X(6) E12.5 Body station loéation of the Gthsensor equation being read from tape.

Repeat card-3 as many times as required to read the specified number of body stations -
indicated by NBS on card-2. Omit card-3 if NBS = 0.
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SENSOR Cards

The SENSOR control card set defines the sensor equations which are to be read into the
matrix polynomial. The row and column size of the matrix and vector polynomial are not

increased.

SENSOR card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 SENSOR 8A10 Keyword indicating that sensor equations are to be read from tape.
{SE}
SENSOR card-2
KEYWORD/
COLS. VARIABLE FORMAT NESCRIPTION
1-5 NTAPE 15 Number of tape unit. If negative, the tape will be rewound
before any file or matrix skipping occurs.
6-10 NFILE 15 Number of end-of-files to skip past. A minus number will
backspace the tape that many files.
11-15 NMAT 15 Number of matrices to skip past on tape. This number must
be positive.
16-20 ICYCLE I5 The number of sensor equations to generate.
If ICYCLE = 0 or 1, only one sensor equation is generated.
SENSOR card-3
KEYWORD/
COoLS. VARIABLE FORMAT DESCRIPTION
1-12 BS E12.5 The body station Tocation of the sensor equation which is to be

placed in the matrix polynomial.
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SENSOR card-4

KEYWORD/
COLS. VARIABLE _ FORMAT - ~ DESCRIPTION
1-5 IQROW 15 Row Position.
6-10 1QPOW I5 Power of s.
11-15 . ILIM I5 If ILIM = 0, a1l columns are read from tape.

If ILIM # 0, columns 1 through value of ILIM

are read.

Repeat card-3 and card4 as many times as required to generate the number of sensor
equations as indicated by ICYCLE (card-2).

6.3.3 ROOTS OF MATRIX AND ROOT LOCUS

The entire computing program depends upon the QR algorithm to obtain roots of a matrix
polynomial. The root locus portion of the program uses the QR algorithm directly to obtain
roots for the specified gain values.

e COMPUTE

e COMPUTE POLES

e COMPUTE ZEROS

e COMPUTE LOCUS

e GAIN

e COMPUTE ROOT LOCUS

e COMPUTE ROOT LOCUS
WITH PREVIOUS POLES

e COMPUTE ROOT LOCUS
WITH PREVIOUS ZEROS

Computes root of matrix currently in core and prints
results.

Same as COMPUTE except roots are saved in pole
(denominator) array.

Same as COMPUTE except roots are saved in zero
(numerator) array.

Same as COMPUTE except roots are saved for plotting
purposes.

The GAINS card permits input of gains values, phase
values, and matrix polynomial locations for the gains
which are to be used for the root locus calculations.

This control card causes the computer to enter the root
locus calculation sequence.

This control card initiates the root locus calculation
sequence using poles previously calculated by either a

COMPUTE POLES card or COMPUTE ROOT LOCUS card.

This card initiates the root locus calculation sequence using
zeros previously calculated by either a COMPUTE ZEROS
card or COMPUTE ROOT LOCUS card.
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COMPUTE ROOT LOCUS
WITH PREVIOUS POLES
AND ZEROS

FORM POLYNOMIAL

NO FORM POLYNOMIAL

PLOT ROOT LOCUS

EXECUTE PLOTS

EXECUTE PLOTS
WITH POLES

EXECUTE PLOTS
WITH ZEROS

EXECUTE PLOTS WITH
POLES AND ZEROS

STATE

This card initiates the root locus calculation sequence using
poles and zeros previously calculated by use of the
COMPUTE POLES, COMPUTE ZEROS, and/or COMPUTE
ROOT LOCUS control card.

This control card causes the characteristic polynomial to be
be formed for each set of roots which is computed.

This control card negates the effect of the FORM
POLYNOMIAL control card.

This car permits specification of the root locus plots.

This card permits specified sets of roots to be plotted on
in the s-plane.

This card has the same effect as EXECUTE PLOTS except
poles are plotted as x's in addition to the roots which are
plotted as dots.

This card is similar to the EXECUTE PLOTS WITH POLES
control card. Zeros are plotted with o's in addition to the
roots which are plotted as dots.

This card combines the features of the above two cards to
produce plots with roots as dots, poles as x's, and zeros as
o's.

This card transforms matrix polynomial equation to state
variable form and calculates roots.

The control cards COMPUTE POLES and COMPUTE ZEROS are employed to establish
transfér functions for use by the time response and frequency response portions of the
program. A typical procedure to follow for using these control cards is as follows:

e Form a matrix which represents the characteristics of a system
® Use the COMPUTE POLES control card

® Use Cramer's rule to establish a matrix which represents the numerator of one of the
system variables

® Use the COMPUTE ZEROS control card

Both the poles and zeros are saved permanently within the computer. Both arrays may be
changed independently by the subsequent use of the COMPUTE POLES and COMPUTE
ZEROS control cards. Manipulations of the poles and zeros are described in the Transfer
Function Formation section, 6.3.4.



Root locus calculations are initiated by a COMPUTE ROOT LOCUS control card, or one of
the variations of the COMPUTE ROOT LOCUS control card. The root locus calculation
sequence is as follows:

® Compute open-loop poles and zeros based on gain locations specified by the user
® Cancel nearly equal pole/zero pairs which fall into tolerances specified by the user
® Compute an open-loop frequency response (Nyquist and Bode)

® Compute roots for all specified gain values and phase angles

@ Plot the results in root locus, Bode, and Nyquist formats with the printout (printer-
plotter)

The cancellation of poles and zeros causes a significant reduction in central processor time.
For most development work, the cancellation tolerances should be fairly broad in order to
coserve machine time and to restrict the printout to only the roots of significant interest.
Small or zero cancellation limits should be used for initial runs and final runs involved in
the development of a system. Users will be able to readily assess the trades involved because
central processor time is printed with each set of roots.

The QR program calculates open-loop poles and zeros as follows:

1. The program searches all gain locations to determine if they are along one row. If the
locations are not along one row, the program goes to step no. 7.

2. The program sets all elements on the gain row to zero except elements which correspond
to the gain locations.

3. Roots of the modified matrix are computed and stored in the zero array.
4. The matrix is restored to its original form.
5. All elements corresponding to the gain locations are set equal to zero.

6. Roots of the modified matrices are computed and stored in the pole array. The program
exits from the zero and pole formation operation.

7. The program searches all gain locations to determine if they are along one column. If the
gain locations are not along one column, go to step no. 9.

8. The program sets all elements on the gain column to zero except elements which
correspond to the gain location. Go to step no. 3.

9. The following message is printed: "ZEROS CANNOT BE FOUND".
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COMPUTE Card

This control card causes roots of the current matrix to be calculated and printed. None of
the roots are saved on file.

COMPUTE card-1

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 COMPUTE 8A10 Keyword indicating that the roots of the current matrix polynomial
{C0} will be calculated and printed.
COMPUTE POLES Card

This control card has the same effect as the COMPUTE control card except that the roots
are saved in the pole (denominator) array.

COMPUTE POLES card-1

KEYWORD/
COLS. VARTABLE FORMAT DESCRIPTION

1-80 COMPUTE POLES 8A10 Keyword indicating that the roots of the current matrix polynomial
{cP} will be calculated,printed and stored as poles.

COMPUTE ZEROS Card

This control card has the same effect as the COMPUTE control card except the roots are
saved in the zero (numerator) array.

COMPUTE ZEROS card-1

KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION

1-80 COMPUTE ZEROS 8A10 Keyword indicating that the roots of the current matrix polynomial
(cz i will be calculated,printed and stored as zeros.

COMPUTE LOCUS Card

This control card has the same effect as the COMPUTE control card except the roots are save
saved in the plot storage file. Many sets of roots can be stored on the plot file. Each appear-
ance of the COMPUTE LOCUS adds a set of roots to the file. Plots can be formed from the
stored roots by use of an EXECUTE PLOTS control card described later. Roots saved on




the plot file are retained until destroyed by the following control cards: EXECUTE PLOTS,
COMPUTE ROOT LOCUS, and BEGIN.

COMPUTE LOCUS card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 COMPUTE LOCUS 8A10 Keyword indicating that the roots of the current matrix polynomial
{cL} will be calculated,printed and saved for plotting.
GAINS Cards

The GAIN card set permits input of gain values, phase values, and gain locations. The gain and
and phase values are used during the COMPUTE ROOT LOCUS sequence to generate a root

locus.

GAINS card-1

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-80 GAINS 8A10 Keyword indicating gain values, phase values and gain locations
{61} will be read from cards.

GAINS card-2
KEYWORD/ B

COLS. VARIABLE FORMAT DESCRIPTION

1-5 NGAIN 15 The number of ocains (default = 48).

6-10 MPHASE 15 The number of phases (default = 6).
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GAINS card-3

Omit this card if NGAIN = 0 (card-2).

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 GAIN(T) E12.5 Tst GAIN value.
13-24 GAIN(2) E12.5 2nd GAIN value,
25-36 GAIN(3) E12.5 3rd GAIN value.
37-48 GAIN(4) E12.5 4th GAIN value.
49-60 GAIN(5) £12.5 5th GAIN value.
61-72 GAIN(6) E12.5 6th GAIN value.

Repeat card-3 as many times as necessary to list all gain values as indicated by NGAIN on

card-2.

GAINS card4

Omit this card if NPHASE = 0 (card-2).

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION
1-12 PHASE(1) E12.5 1st PHASE value. (degree)
13-24 PHASE(2) E12.5 2nd PHASE value.

25-36 PHASE(3) E12.5 3rd PHASE value.

37-48 PHASE(4) E12.5 4th PHASE value.

49-60 PHASE(5) E12.5 5th PHASE value.

61-72 PHASE(6) E12.5 6th PHASE value.

Repeat card-4 as many times as necessary to list all phase values as indicated by NPHASE on

card-2.

GAINS card-5

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NPLOC 15 The number of gain locations (defauit = 8)
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GAINS card-6

" KEYWORD/
COLS. VARIABLE FORMAT _ ] DESCRIPTION
1
1-2 IRCM(1) 12 Row number
3-4 IRCM(2) 12 Column number | I1st gain locations
5-6 TRCM(3) I2 Power of s
7-20 14X Blank : J
21-22 TRCM(4) 12 Row number W
23-24 IRCM(5) 12 Column number 2nd gain locations
25-26 IRCM(6) 12 Power of s
27-40 14X Blank
J
- _— — -
41-42 IRCM(7) 12 Row number
43-44 IRCM(8) 12 Column number ! 3rd gain locations
45-46 IRCM(9) 12 Power of s
47-60 14X Blank
;
61-62 IRCM(10) 12 Row number
63-64 IRCM(11) 12 Column number § 4th gain Tocations
65-66 IRCM(12) 12 Power of s
67-80 14X Blank J

Repeat card-6 as many times as necessary to list all the gain locations.

The GAINS card set can also be used to specify the gain locations for the calculation of an

open-loop unsteady frequency response.
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COMPUTE ROOT LOCUS Card

This control card causes the computer to enter the root locus sequence. Root locus and
frequency response calculations are computed, printed, and plotted according to the options
specified by the PLOT ROOT LOCUS card set.

COMPUTE ROOT LOCUS card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 COMPUTE _ 8A10 Keyword indicating that root locus calculations are to be
ROOT LOCUS
—_— performed.
{CRL}

Open-loop zeros and poles are computed with respect to the gain locations which have geen
specified in the GAIN control card set.

Pole and zero pairs which fall into the tolerances specified by the CANCEL control card are
cancelled and printed. The remaining poles and zeros are printed.

An open-loop frequency response is computed unless suppressed by the FREQUENCY
RESPONSE control card.

COMPUTE ROOT LOCUS WITH PREVIOUS POLES Card

Use of the COMPUTE ROOT LOCUS WITH PREVIOUS POLES control card permorms a
root locus calcuation using poles previously computed by either a COMPUTE POLES
control card or a COMPUTE ROOT LOCUS control card.

COMPUTE ROOT LOCUS WITH PREVIOUS POLES card-1

KEYWORD/
COLS. VARIABLE FORMAT NDESCRIPTION
1-80 COMPUTE ROOT 8A10 Keyword indicating that root locus calculations are to be
LOCUS WITH performed using previously calculated poles.

PREVIOUS POLES

{ CRLWPP }

COMPUTE ROOT LOCUS WITH PREVIOUS ZEROS Card

Use of the COMPUTE ROOT LOCUS WITH PREVIOUS ZEROS control card performs a
root locus calculation using zeros previously computed by either a COMPUTE ZEROS
control card or a COMPUTE ROOT LOCUS control card.




COMPUTE ROOT LOCUS WITH PREVIOUS ZEROS card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 COMPUTE ROOT 8A10 Keyword indicating that root locus calculations are to
LOCUS WITH be performed using previously calculated zeros.

PREVIOUS ZEROS
{ CRLWPZ }

COMPUTE ROOT LOCUS WITH PREVIOUS POLES AND ZEROS Card

Use of the COMPUTE ROOT LOCUS WITH PREVIOUS POLES AND ZEROS control card
performs a root locus calculation using poles and zeros previously calculated by use of the
COMPUTE POLES, COMPUTE ZEROS, and/or COMPUTE ROOT LOCUS control cards.

COMPUTE ROOT LOCUS WITH PREVIOUS POLES AND ZEROS card-1

KEYWORD/
cots. | VARIABLE FORMAT DESCRIPTION

1-80 COMPUTE ROOT 8A10 Keyword indicating that root locus calculations are to

LOCUS WITH be performed using previously calculated poles and zeros.
PREVIOUS POLES
AND ZEROS

{ CRLWPPAZ }

FORM POLYNOMIAL Card

This control card causes the characteristic polynomial to be formed for each set of roots
which is computed. Once this option is selected, a characteristic polynomial is formed each
time roots are calculated by a COMPUTE, COMPUTE ZEROS, COMPUTE POLES, etc.

FORM POLYNOMIAL card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 FORM POLYNOMIAL } 8A10 Keyword indicating that a polynomial will be formed
(FP} for each set of roots which are camputed.
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NO FORM POLYNOMIAL Card

This control card negates the e_ffect of the FORM POLYNOMIAL control card. The QR
program does not form any characteristic polynomial until the FORM POLYNOMIAL card
appears in the input stream.

NO FORM POLYNOMIAL card-1

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-80 NO FORM 8A10 Keyword indic@ting that no polynomial will be formed for
POLYNOMIAL any computed roots. (program default)
{NFP}

PLOT ROOT LOCUS Cards

This control card permits specification for root locus plotting to be read. The user must
specify the number of regions of the s-plane to be plotted and the boundaries of these
regions. Plots may be done by use of the printer-plotter.

PLOT ROOT LOCUS card-1

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-80 |PLOT ROQT LOCYS 8A10 Keyword indicating that plotting of root locus results is
{PRL} to be done.

PLOT ROOT LOCUS card-2

KEYWORD/

cotLs. VARIABLE FORMAT DESCRIPTION

1-5 NPLOT 15 Number of regions of s-plane to plot. (maximum = 6)}. (default=0)
If the number of region is zero suppress root locus
plotting {value assigned automatically by proaram if
not specified by the user)..

6-10 NPHA 15 If NPHA = 0, each change in phase will start a new plot.

If NPHA =1, all phase angles will be plotted on the same plot.

11-15 IRLPF 15 If IRPLF = 2, only plots from the printer-piotter.




PLOT ROOT LOCUS card-3

Omit card-3 if NPLOT = 0 (card-2)

The regions of the s-plane should be square, i.e., the distance from the upper limit to the
lower limit is equal on the x and y axes. For printer-plotter purposes, the vertical distance
between the upper and lower limits should be evenly divisible by 5.

KEYWORD/ )
COLS. VARIABLE FORMAT DESCRIPTION
1-12 XLFT E12.5 Left 1imit of X axis.
13-24 XRT E12.5 Right 1imit of X axis.
25-36 YTOP E12.5 Upper Timit of Y axis.
37-48 YBOT E12.5 Lower Timit of Y axis.

Repeat card-3 as many times as necessary to list all of the regions.

EXECUTE PLOTS Card

This control card permits specified sets of roots to be plotted in the s-plane according to the
specifications listed in the PLOT ROOT LOCUS control card set. The plotting symbol is a
dot. This option should not be confused with the automatic plotting of root loci initiated
by the COMPUTE ROOT LOCUS control card. The roots to be plotted must have been
previously formed by a COMPUTE LOCUS control card. Printer-plotter plots are generated.

EXECUTE PLOTS card-1

KEYWORD/
caLs. VARIABLE FORMAT DESCRIPTION
1-80 EXECUTE PLOTS 8A10 Keyword irdicating that that sets of roots are to be plotted
{EP} in the s-plane according to the specifications on the PLOT
ROOT LOCUS control cards.

EXECUTE PLOTS WITH POLES Card

This control card has the same effect as EXECUTE PLOTS except poles are plotted with
x's in addition to the roots which are plotted with dots. The poles can be formed by the
control cards COMPUTE POLES or COMPUTE ROOT LOCUS.

EXECUTE PLOTS WITH POLES card-1

[ '7fﬂ_iKEYWORD/ -

COLS. VARIABLE FORMAT DESCRIPTION

1-80 EXECUTE PLOTS BA10 Keyword indicating that sets of roots and poles (marked with x's)
WITH POLES are to be plotted in the s-plane according to the specifications
{EPWP} on the PLOT ROOT LOCUS control cards.
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EXECUTE PLOTS WITH ZEROS Card

This control card is similar to the EXECUTE PLOTS WITH POLES control card. However,
zeros are plotted with o's in addition to the roots which are plotted with dots. The zeros
can be formed by the control cards COMPUTE ZEROS or COMPUTE ROOT LOCUS.

EXECUTE PLOTS WITH ZEROS card-1

WITH ZEROS

{EPWZ }

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 EXECUTE PLOTS 8A10 Keyword indicating that sets of roots and zeros (marked with o's)

are to be plotted in the s-plane according to the specifications
on the PLOT ROOT LOCUS control cards.

EXECUTE PLOTS WITH POLES AND ZEROS Card

This control card combines the features of the above two cards to produce plots with roots
as dots, poles as x's and zeros as 0's.

EXECUTE PLOTS WITH POLES AND ZEROS card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 EXECUTE PLOTS 8A10 Keyword indicating that sets of roots, poles (marked with x's),
WITH POLES and zeros (marked with o's) are to be plotted in the s-plane
AND ZEROS according to the specifications on the PLOT ROOT LOCUS control
{EPWPAZ} cards.

STATE Card

This control card transforms the matrix polynomial equation to state variable form. The

roots are calculated and printed.

STATE card-1i

KEYWORD/

coLs. VARIABLE FORMAT DESCRIPTION

1-80 STATE 8A10 Keyword indicating that the set of simultaneous equations defined
{STA} in the s-plane are placed in state variable form.
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6.3.4 TRANSFER FUNCTION FORMATION

Transfer functions are ratios of factored polynomials in the Laplace operator, s. The roots of

of the denominator and numerator polynomials are called poles and zeros, respectively. The
user is responsible for performing manipulations (e.g., Cramer's rule) to set the matrices up
such that roots of one matrix polynomial are poles, and roots of another matrix are zeros.
Formation of the poles and zeros is discussed in the Roots of Matrix and Root Locus
section, 6.3.3.

e CANCEL The CANCEL card causes poles and zeros to be eliminated.

DC GAIN The DC GAIN card permits the user to add scale factor to
the transfer functions formed by the COMPUTE ROOT
LOCUS and FORM RATIO OF POLYNOMIALS control

card.

e INTEGRATE This card permits poles to be added at the origin of the
transfer functions formed by the FORM RATIO OF
POLYNOMIALS control card.

® DIFFERENTIATE This card is similar to INTEGRATE control card except
zeros are added at the origin of the transfer function.

e FORM RATIO OF This card causes formation of a transfer function from the

POLYNOMIALS poles and zeros which have been previously formed by

COMPUTE POLES and COMPUTE ZEROS control cards.

In the transfer function forming process, the poles and zeros are assigned o special arrays.
The leading coefficient of the pole array is normalized to unity. Also, provisions are made
for the following:

® Cancellation of pole/zero pairs which are equal or nearly equal (see the control card
CANCEL)

® Adjusting the transfer function gain (see the control card DC GAIN)

® Adding poles or zeros to the origin (see the control cards INTEGRATE and DIFFEREN-
TIATE)

Note that a transfer function is also formed automatically within the COMPUTE ROOT
LOCUS sequence. The process of forming the transfer function is the same as described

above with one exception; namely, poles and zeros are not added at the origin, even if the
control cards INTEGRATE or DIFFERENTIATE have been used.
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CANCEL Cards

The CANCEL control card causes poles and zeros to be eliminated if a pole/zero pair is
sufficiently close on the s-plane. All combinations of poles and zeros are tested to determine
the cancelable pairs. The cancellation limits are also used in the time response option.

CANCEL card-1

KEYWORD/
COLS. VARIABLE | FORMAT DESCRIPTION

1-80 CANCEL 8A10 Keyword indicafing that poles and zeroes will be eliminated in the
{C} transfer function formation according to the specifications given.

CANCEL card-2

KEYWORD/

coLs. VARIABLE | FORMAT DESCRIPTION

1-12 XREAL E12.5 The maximum difference between the real values of poles and zeros
allowed for cancellation of pole-zero pairs. (Default = 0)

13-24 XIMAG E12.5 The maximum difference between the imaginary values of pole and
zeros allowed for cancellation of pole-zero pairs. ( Default = 0)

25-36 CRATIO E12.5 The maximum magnitude ratio allowed for canellation of pole-zero
pairs. (Default = 0)

DC GAIN Cards

The DC GAIN control card permits the user to add scale factors to the transfer functions
formed by the COMPUTE ROOT LOCUS and FORM RATIO OF POLYNOMIALS
control cards.

A composite gain is formed by dividing the product of the zero gains by the product of the
pole gains. This composite gain multiplies the transfer function gain. An example of a use

of the DC GAIN control card would be the use of one zero gain equal to 57.3. This gain
would convert an output in radian units to degrees units. If the DC GAIN contro! card is not
used, the composite gain is set equal to 1.

DC GAIN card-1

KEYWORD/
COLS. VARIABLE | FORMAT DESCRIPTION

1-80 DC GAIN 8AT0 Keyword indicating that scale factors used to modify the transfer
{DC5} function are to be read from cards.




DC GAIN card-2

KEYWORD/ . :
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NGAINP 15 Number of pole (denominator) gains (default = 6).
6-10 NGAINZ 15 Number of zero (numerator) gains (default = 6).

" DC GAIN card-3

Omit card-3 if NGAINP = 0 (card-2)

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 GAINP(T) E12.5 Value of gain for the 15t pole.
13-24 GAINP(2) E12.5 Value of gain for the 2™ pole.
25-36 GAINP(3) E12.5 Value of gain for the 3"9 poTe.
37-48 GAINP(4) E12.5 Value of gain for the ath pole.
44-60 GAINP(5) E12.5 Value of gain for the 5th pole.
61-72 GAINP(6) E12.5 Value of gain for the 6" pole.
DC GAIN card-4
Omit card-4 if NGAINZ = 0 (card-2)
| KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 GAINZ(1) E12.5 Value of gain for the 15 zero.
13-24 GAINZ(2) E12.5 Value of gain for the 2" zero.’
25-36 GAINZ(3) E12.5 Value of gain for the 3rd zero.
37-48 GAINZ(4) E12.5 value of gain for the 4th zero.
49-60 GAINZ(5) E12.5 Value of gain for the 5t zero.
61-72 GAINZ(6) £12.5 Value of gain for the 6" zero.




INTEGRATE Cards

This control card permits poles to be added at the origin of the transfer functions formed
by the FORM RATIO OF POLYNOMIALS control card. The number of integrations which
are specified are equal to the number of poles added at the origin. This control card can be
used to introduce a step function (1/s) to the transfer function. If the INTEGRATE control
card is not used, the number of integrations is assumed to be zero. .

INTEGRATE card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 INTEGRATE 8A10 Keyword indicating that poles are to be added to the origin
{1} of the transfer function.
INTEGRATE card-2
KEYWORD/
COLS. VARTABLE FORMAT DESCRIPTION o
1-5 NINTEG 15 Number of integrations.
DIFFERENTIATE Cards

This control card is similar to the INTEGRATE control card except zeros are added at the
origin of the transfer function. This control card is normally used to differentiate an output
variable. If the DIFFERENTIATE control card is not used, the number of differentiations
is assumed to be zero.

DIFFERENTIATE card-1

KEYWORD/
CoLs. VARIABLE FORMAT DESCRIPTION
1-80 DIFFERENTIATE | 8A10 Keyword indicating that zeros are to be added to the orgin of
{D} the transfer function.

DIFFERENTIATE card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NDIFFR 15 Number of differentiations.
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FORM RATIO OF POLYNOMIALS Card

This control card causes formation of a transfer function from the poles and zeros which
have been previously formed by the COMPUTE POLES and COMPUTE ZEROS control
cards. The FORM RATIO OF POLYNOMIALS card must be used for establishing a transfer
function even if cancellation is not required. Options specified under the CANCEL, DC
GAIN, INTEGRATE, and DIFFERENTIATE control cards are exercised at this time.

FORM RATIO OF POLYNOMIALS card-1

KEYWORD/
COLS. VARIABLE FORMAT

e 1

DESCRIPTION

1-80 FORM RAIO OF 8A10
POLYNOMIALS
{FROP}

Keyword indicating that a transfer function is to be formed from
from the poles and zeros calculated previously.

6.3.5 TIME RESPONSE

Time response calculations are performed by the inverse Laplace method. The inverse
Laplace calculations in the QR program permits multiple poles (maximum = 6). Residues
are computed according to the transfer function discussed in the Transfer Function Forma-
tion section, 6.3.4. Time response computations are obtained from transfer functions which
are generated by the QR algorithm. The transfer functions are not obtained directly from
the matrix polynomial. The time response is determined at discrete time points selected by
the user. Plotting of the resulting response is available in printer-plotter plots form.

e TIME INTERVALS

e COMPUTE TIME
RESPONSE

e COMPUTE TIME
RESPONSE WITH TAU

e COMPUTE CONVOLUTE

® FORCING FUNCTION

o TIME RESPONSE

e PLOT TIME RESPONSE

This card permits time points to be specified for the
evaluation of the TIME RESPONSE.

This card causes a time response to be formed.
This card has the same effect as the COMPUTE TIME
RESPONSE except the forcing function can be turned off

after a specified time interval.

This card permits the user to calculate the time response of
any linear system given nearly any input function.

This card permits the user to establish a forcing function
that is used with the COMPUTE CONVOLUTE card.

This card permits the user to control the residue and time
response printout.

This card permits the user to specify the plot options of

the TIME RESPONSE.
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TIME INTERVAL Cards

This control card permits time points to be specified for the evaluation of the time response.
Time points are listed by means of intervals. Each interval has a starting time, a time
increment, and a final time.

TIME INTERVAL card-1

KEYWORD/
CoLS. VARIABLE FORMAT ) ~ DESCRIPTION
1-80 TIME INTERVALS 8A10 Keyword indicating that data defining the time intervals
{TI} is to be read from cards.

TIME INTERVALS card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION o
1-5 NTIME I5 Number of time intervals (maximum = 6).

TIME INTERVALS card-3

KEYWORD/
COLS. VARIABLE FORMAT NESCRIPTION
1-12 TIMEI E12.5 Starting time for interval.
13-24 TIMED E12.5 Time increment for interval.
25-36 TIMEF E12.5 Final time for inerval.

Repeat card-3 as many times as necessary to list all intervals as indicated by NTIME on
card-2.

COMPUTE TIME RESPONSE Card

This control card causes a time response to be formed. The poles and zeros established by
the FORM RATIO OF POLYNOMIALS control card are used to form residues. The residues
are then used to find the time response by inverse Laplace transform techniques. The differ-
ence limits established by the CANCEL control card are used to determine if poles are
repeated, i.e., close enough to be considered equal. The time response is calculated for the
time points specified by the TIME INTERVALS control card.



COMPUTE TIME RESPONSE card-1

TIME RESPONSE

{CTR }

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 COMPUTE 8A10 Keyword indicating that a time response is to be calculated.

COMPUTE TIME RESPONSE WITH TAU Cards

This control card has the same effect as the COMPUTE TIME RESPONSE control card
except the forcing function can be turned off after a specified time interval.

COMPUTE TIME RESPONSE WITH TAU card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION

1-80 COMPUTE 8A10 Keyword indicating that a time response is to be calculated

TIME RESPOMSE for a forcing function stopping at time, 7.

WITH TAU
{CTRWT}

COMPUTE TIME RESPONSE WITH TAU card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 TAU E12.5 Time constant.
COMPUTE CONVOLUTE Card

This control card computes a time history by evaluating the convolution integral shown in
section 4.8. Care should be used with the input of f(t) because the function is set to zero
when time advances beyond the last time value at which the forcing function is defined.
Trapezoidal integration is used by the QR program with the step size being determined by
the TIME INTERVALS control card. The poles and zeros established by the FORM RATIO
OF POLYNOMIALS card determines the impulse response, h(t).

COMPUTE CONVOLUTE card-1

KEYWORD/

COLS. VARIABLES FORMAT DESCRIPTION
1-80 COMPUTE 8A10 Keyword indicating that a time respohse will be calculated
CONVOLUTE using the convolution ingetral.
{cc}
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FORCING FUNCTION Cards

This control card permits the user to establish a forcing function that is used with the
COMPUTE CONVOLUTE control card.

FORCING FUNCTION card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 }FORCING FUNCTION} 8A10 Keyword indicating that data defining the forcing function to be
{FF} used in the convolution calculation is to be read from cards.

FORCING FUNCTION card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NFF 15 The number of data points which define the forcing function.

(default=12)

FORCING FUNCTION card-3

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 TIMEI(1) F12.5 1st TIME value.
13-24 TIMEI(2) E12.5 2nd TIME value
25-36 TIMEI(3) E12.5 3rd TIME value.
37-48 TIMEI(4) E12.5 4th TIME value.
49-60 TIMEI(5) E12.5 5th TIME vaiue.
61-72 TIMEI(6) E12.5 6th TIME value.

Repeat card-3 as many times as necessary to list all time values as indicated by NFF on
card-2. Omit card-3 if NFF = 0 on card-2.



FORCING FUNCTION card-4

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 FFT{1) E12.5 I1st forcing function value.
13-24 FFT(2) E12.5 2nd forcing function value.
25-36 FFT(3) E12.5 3rd forcing function value.
37-48 FFT(4) E12.5 4th forcing function value.
49-60 FFT(5) E12.5 5th forcing function value.
61-72 FFT(6) E12.5 6th forcing function value.

Repeat card-4 as many times as necessary to list all forcing function values. Omit card<4 if
NFF = 0 on card-2. It is recommended that the number of data points be kept to a
minimum.

TIME RESPONSE Cards

This control card permits the user to control the residue and time response printout.

TIME RESPONSE card-1

TIME RESPONSE

{IR}

“KEYWORD/
COLS. VARIABLE | FORMAT 7# DESCRIPTION
1-80 8A10 Keyword indicating results of the time response calculation

are to be printed according to the specified options.

TIME RESPONSE card-2

KEYWORD/
COLS. VARTABLE FORMAT DESCRIPTION
1-5 ITIME3 15 If ITIME3 = 1, print both residues and response (Default).
‘If ITIME3 = 2, print the residues only.
If ITIME3 = 3, print the response only.
If ITIME3 = 4, print neither residues nor response.
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PLOT TIME RESPONSE Cards

This control card permits the user to specify the options desired for plotting of the time

response.

PLOT TIME RESPONSE card-1

KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-80 PLOT TIME 8A10 Keyword indicating that the results of the time response
RESPONSE calculation are to be plotted according to the specifications
{PTR} read from cards.

PLOT TIME RESPONSE card-2

KEYWORD/

COLS. VARIABLE FORMAT NESCRIPTION

1-5 ITIMEY 15 If ITIMEY =0, no plots are made { Default)
If ITIMEl =1, time response is plotted. (scales are
set automatically)

6-10 ITIME2 15 If ITIME2Z =2, printer-plotter plots only.

11-15 ITIME3 15 If ITIME3 = 0, no ordinate title is read.
If ITIME3 =1, the title of the ordinate is specified
on card-3.

16-20 ITIME4 15 If ITIME4 = 0, no ordinate scales are read.
If ITIME4A =1, the ordinate scales are specified on card 4.

PLOT TIME RESPONSE card-3

If ITIME 3 = 0 (card-2) omit this card.

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-40 TITLE 4a10 Ordinate title.




PLOT TIME RESPONSE card4

If ITIME 4 = 0 (card-2) omit this card.

[ " KEYWORD/

COLS. VARIABLE FORMAT { o DESCRIPTION
1-12 YQTOP(1) E12.5 Maximum value of ordinate scale.
13-24 YQTOP(2) E12.5 Minimum value of ordinate scale.

6.3.6 FREQUENCY RESPONSE

Frequency response computations are obtained from the transfer functions which are
generated by the QR algorithm using the control cards listed in section 6.3.4. Frequency
response calculations are performed by evaluating the transfer function at discrete values of
S =jw.

e COMPUTE FREQUENCY This card causes a frequency response to be formed.
RESPONSE

e GUST SPECTRUM This card permits input of a gust power spectrum.

e COMPUTE PSD This card causes a power spectral density (PSD) response
to be formed.

o FREQUENCY RESPONSE  This card permits the user to control the printout of the
frequency response.

e PLOT FREQUENCY This card permits the user to specify the plot options of
RESPONSE the frequency response.
e PLOT PSD This card permits specification of the power spectral

density plots.

COMPUTE FREQUENCY RESPONSE Card

This control card causes a frequency response to be formed. The poles and zeros established
by the FORM RATIO OF POLYNOMIALS control card are used to compute the frequency
response. The response is evaluated at frequencies automatically selected by the program.
Starting and stopping frequencies are determined by examination of the poles and zeros.
Intermediate frequencies are selected by holding the gain change to 2 dB and the phase
change to 5 degrees between response points adjacent on the frequency scale. The program
computes the following: the minimum gain values, the maximum gain values, the gain
margins, and the phase margins. For the above parameters, the direction of travel (increasing
or decreasing gain, and clockwise or counter-clockwise phase angle) is printed. The mean
square value, RMS value, and characteristic frequency of the response are calculated and
printed. These data are not computed if the transfer function has a pole at the origin.
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COMPUTE FREQUENCY RESPONSE card-1

COLS.

KEYWORD/
VARIABLE

FORMAT

DESCRIPTION

1-80

COMPUTE
FREQUENCY

—

RESPONSE
{CFR}

8A10

Keyword indicating a frequency response calculation is to be
performed.

GUST SPECTRUM Cards

The GUST SPECTRUM control card should be used prior to use of a COMPUTE PSD
control card (unless only the response for white noise is desired).

GUST SPECTRUM card-1

{Gs}

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 | GUST SPECTRUM 8A10 Keyword indicating the qust spectrum parameters are to be read.

GUST SPECTRUM card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 GAIN(1) E12.5 Ox RMS turbulence Tevel of gust (meter/sec) or {ft/sec).
13-24 GAIN(2) E12.5 L characteristic length (meters) or (ft).
25-36 GAIN(3) E12.5 V free stream velocity of airplane (meter/sec) or (ft/sec).
37-48 GAIN(4) E12.5 x | coefficients required to create
49-60 GAIN(5) E12.5 y $a von Karmen or Dryden or any other
61-72 GAIN(6) F12.5 K] gust power spectrum.

GUST SPECTRUM card-3

KEYWORD/
COLS. VARTABLE FORMAT DESCRIPTION
1-12 GAIN(7) E12.5 K2 coefficients required to create
13-24 GAIN(8) E12.5 K3 a von Karmen or Dryden or any other gust spectrum.

80




COMPUTE PSD Card

This control card causes a PSD of a response to be formed. A gust power spectrum must
first be input by use of a GUST SPECTRUM control card. (If the gust spectrum is not
specified, white noise is assumed.) The poles and zeros established by the FORM RATIO
OF POLYNOMIALS control card are used to compute the frequency response. The PSD of
the response is evaluated at frequencies automatically selected by the program using the
same criteria listed under the COMPUTE FREQUENCY RESPONSE control cards. The
printing of the summary data and the detailed response is controlled by the FREQUENCY
RESPONSE control card. Plotting of the results is done according to the specifications of
the PLOT FREQUENCY RESPONSE control card. Nyquist plots are not formed for the
PSD response even if Nyquist plots are specified by PLOT FREQUENCY RESPONSE
control card.

COMPUTE PSD card-1

{CPSD}

KEYWORD/
.COLS. VARTABLE FORMAT DESCRIPTION
1-80 COMPUTE PSD 8A10 Keyword indicating the power spectral density of a response

is to be calculated.

FREQUENCY RESPONSE Cards

This control card permits the user to control the printout of the frequency response or the
power spectral density of the response and associated summary data. This card also controls
the printout at the frequency response which is automatically computed in the root locus

sequence.

FREQUENCY RESPONSE card-1

KEYWORD/

CoLS. VARIABLE FORMAT DESCRIPTION
1-80 FREQUENCY 8A10 Keyword indicating that the results of the frequency response
RESPONSE calculation are to be printed as specified.
{FR}
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FREQUENCY RESPONSE card-2

~KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 IFRQI 15 If IFRQ1 = 0, do not compute frequency response automatically
in root locus sequence.
If IFRQ1 =1, compute frequency response automatically in
root Tocus sequence.

6-10 IFRQ2 15 If IFRQ2 = 1, print both summary and detailed responses.
If IFRQ2 = 2, print only summary response (Default).
If 1FRQ2 = 3, print only detailed response,
If 1IFRQ2 = 4, print neither summary nor detailed responses.

PLOT FREQUENCY RESPONSE Cards

This control card permits the user to specify the plot options of the frequency response.
Both Bode and Nyquist plots are available. The user has control over the limits of the
amplitude and frequency scale.

PLOT FREQUENCY RESPONSE card-1

KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-80 PLOT FREQUENCY | 8A10 Keyword indicating the the frequency response results are to be
RESPONSE plotted as specified.
{PFR}

PLOT FREQUENCY RESPONSE card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NPLOTF 15 Number of regions of freguency scale desired to be plotted.

A zero will suppress the plot option. (default)




PLOT FREQUENCY RESPONSE card-3

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 TOMGAL(I) 15 Log to base 10 of minimum frequency. (Rad/sec).
6-10 I0MGAR(I) 15 Log to base 10 of maximum frequency. (Rad/sec),
11-15 IDRTOP(I) I5 Maximum value of amplitude scale in dB.
16-20 IBONYQ(T) 15 If IBDNYQ(I) = 0, do both Bode and Myquist plots.
If IBDNYQ(I) = 1, do Bode plot only.
If IBDNYQ(I) = 2, do Nyquist plot only.
21-25 IDBSCL(I) 15 If 1DBSCL(I) = 0, use the specified 1imits, IDBTOP(I),

for the amplitude scale.

If 1DBSCL(I) = 1, scale the amplitude automatically.

Repeat card-3 as many times as necessary to read the numbers of regions as indicated by
NPLOTF in card-2. Omit card-3 if NPLOTF = 0 on card-2.

PLOT PSD Cards

This control card permits specification of the PSD plots. PSD can be plotted against Hertz or

radians/second.

PLOT PSD card-1

KEYWORD/
coLs. VARIABLE FORMAT |  DESCRIPTION
1-80 PLOT PSD 8A10 Keyword indicating that the power spectral density results
{PPSD} are to be plotted as specified.
PLOT PSD card-2
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NPSPP 15 Number of areas of frequency scale to plot.
6-10 1DUMMY 15 If IDUMMY = 0, no ordinate title is to be added.
11-15 IPSD1 15 If IPSD1 = 1, the title of the ordinate is specified in card-4.
16-20 1PSD2 15 If IPSD2 = 0, frequencies are in Hertz.
If IPSD2 = 1, frequencies are in Radians/second.
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PLOT PSD card-3

KEYWORD/
COLS. VARIABLE FORMAT o DESCRIPTION
1-12 FLR(I,1) E12.5 Left 1imit of frequency scale.
13-24 FLR(I,2) E12.5 Right 1imit of frequency scale.

Repeat card-3 as many times as necessary to specify plotting of all the frequency areas as
indicated by NPSPP on card-2. Omit card-3 if the NSPP = 0 on card-2.

PLOT PSD card4

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 TITLE 8A10 Ordinate title.

Card-4 is read if IPSD1 =1 on card-2. Card 4 is omitted if NPSPP = 0.

6.3.7 UNSTEADY AERODYNAMICS OPTIONS

This set of control cards performs root locus, flutter, and frequency response calculations
using frequency dependent aerodynamics. The equations are assembled in either one of

two forms as explained in section 4.9. In both cases, the matrix polynomial input to QR is
assumed to contain the non-frequency dependent matrices. For the unsteady frequency
response calculations, one to three independent forcing functions can be used. These vectors
are stored in the vector polynomial (see VECTOR control card set). The input vectors are all
considered coefficients of s ** (.

The control cards UNSTEADY AIRFORCE COEFFICIENTS, COMPUTE FLUTTER 2, and
COMPUTE UNSTEADY FREQUENCY RESPONSE are used with the form 1 (equation
4.8). The AIRFORCE COEFFICIENTS, COMPUTE FLUTTER and COMPUTE FLUTTER
AND ROOT LOCUS are used with form 2 of the equations of motion (equation 4.9).

e AIRFORCE COEFFICIENTS This card permits the airforce coefficients to be input

COEFFICIENTS compatible to form 2 of the equations of motion.

® UNSTEADY AIRFORCE This card permits the airforce coefficients to input
COEFFICIENTS compatible to form 1 of the equations of motions.

e PLOT FLUTTER This card permits the user to input plotting specification

for the COMPUTE FLUTTER options.

e COMPUTE FLUTTER This card causes the computer to enter the flutter sequence
for equations of motion in form 2 format.



e COMPUTE FLUTTER

AND ROOT LOCUS

e COMPUTE FLUTTER 2

e COMPUTE UNSTEADY
FREQUENCY RESPONSE

This card causes the computer to enter the flutter root
locus, sequence for equations of motion in form 2 format.

This card causes the computer to enter the flutter sequence
for equations of motion in form 1 format.

This card causes the computer to enter the unsteady
aerodynamics frequency response calculations for
equations of motion form 1 format.

AIRFORCE COEFFICIENTS Cards

This control card permits the airforce coefficients to be input for the COMPUTE FLUTTER
and COMPUTE FLUTTER AND ROOT LOCUS options of QR. The aerodynamic forces
are assumed to be in a form compatible with form 2 of the equations of motion.

AIRFORCE COEFFICIENTS card-1

options.

KEYWORD/
CoLs. VARIABLE FORMAT DESCRIPTION
1-80 AIRFORCE 8A10 Keyword indicating that airforce coefficients being input for use
COEFFICIENTS with the COMPUTE FLUTTER and the COMPUT FLUTTER AND ROOT LOCUS
{AC}

AIRFORCE COEFFICIENTS card-2

altitudes.

KEYWORD/
COLS. |  VARIABLE FORMAT | DESCRIPTION
1-5 NIGFAA 15 The number of inverse gamma function as well as the number of

(maximum of 6)

AIRFORCE COEFFICIENTS card-3

GINVRS(6)

E12.5

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION
1-12 GINVRS(1) E12.5 1st inverse gamma value.

13-24 GINVRS(2) E12.5 2nd inverse gamma value.

25-36 GINVRS(3) E12.5 3rd inverse gamma valye.

37-48 GINVRS(4) E12.5 4th inverse gamma value.

49-60 GINVRS(5) E12.5 5th inverse gammavalue.

61-72

6th 1inverse gammavalue,
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AIRFORCE COEFFICIENTS card-4

- KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 ALT(1) E12.5 1st altitude in feet (meters)
13-24 ALT(2) E12.5 2nd altitude in feet (meters)
25-36 ALT(3) E12.5 3rd altitude in feet (meters)
37-48 ALT(4) E12.5 4th altitude in feet (meters)
49-60 ALT(5) E12.5 5th altitude in feet (meters)
61-72 ALT(6) £12.5 6th altitude in feet (meters)

AIRFORCE COEFFICIENTS card-5

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 RFRL E12.5 Reduced frequency reference length in meters (inches) .

UNSTEADY AIRFORCE COEFFICIENTS Cards

This card permits the airforce coefficients to be input for the COMPUTE FLUTTER 2 and
COMPUTE UNSTEADY FREQUENCY RESPONSE options in QR. The aecrodynamic forces
are assumed to be in a form compatible with form 1 of the equations of motion.

UNSTEADY AIRFORCE COEFFICIENTS card-1

CoLs.

KEYWORD/
VARIABLE

FORMAT

DESCRIPTION

1-80

UNSTEADY

AIRFORCE
COEFFICIENTS

{UAC }

8A10

Keyword indicating that airforce ceofficients being input for use
with the COMPUTE FLUTTER 2 and the COMPUTE UNSTEADY FREQUENCY
RESPONSE options.




UNSTEADY AIRFORCE COEFFICIENTS card-2

KEYHORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-12 MACH NO. E12.5 Mach number.
13-24 RFRL E12.5 Reduced frequency reference Tength in inches (meters),
25-36 CF E12.5 Correction factor.
37-48 RHO E12.5 Density in kg-sec?/meters” (1b—sec2{ft4)-
49-60 v E12.5 Free stream velocity in meter/sec (ft/sec).

UNSTEADY AIRFORCE COEFFICIENTS card-3

KEYWORD/
COLS. VARTABLE FORMAT BESCRIPTION
1-5 NALT I5 The number of altitudes at which responses are to be computed
for the specified Mach number.

UNSTEADY AIRFORCE COEFFICIENTS card4

KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-12 ALT(1} E12.5 Istaititude in feet {meters)
13-24 ALT(2) E12.5 2nd altitude in feet (meters)
25-36 ALT(3) E12.5 3rd altitude jp feet {meters)
37-48 ALT(4) E12.5 4th altitude ip feet (meters)
49-60 ALT(5) E12.5 5th altitude in feet (meters)
61-72 ALT(6) E12.5 6th altitude in feet (meters)
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The freestream velocity (true atrspeed) and density are automatically calculated at each
altitude for standard atmospheric conditions. These computed values are ignored if the
velocity and density are specified. This latter option could be used for the case of a non-
standard atmeosphere or a fluid medium other than gir. The program converts input values to
in.-lb.-sec., and assumes a consistent set of these units in the analysis.

PLOT FLUTTER Cards

This control card permits the user to input plotting specifications for the COMPUTE
FLUTTER options of QR.

PLOT FLUTTER card-]

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 PLOT FLUTTER 8A10 Keyword indicating that the results of the flutter calculation
(PF} are to be plotted as specified.
PLOT FLUTTER card-2
KEYWORD/
CoLs. VARIABLE FORMAT NESCRIPTION
1-5 NPLTFL 15 If NPLTFL = 0, no plots. (default)
If NPLTFL =1, printer-plots.
PLOT FLUTTER card-3
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
i-12 GMIN E12.5 Minimum damping value {g).
13-24 GMAX E12.5 Maximum damping value (g)
25-36 YMIN E12.5 Minimum velocity in knots (kilometers/hour}.
37-48 VMAX E12.5 Maximum velocity in knots (kilometers/hour).
49-60 CMEN E12.5 Minimum frequency (Hertz}.
61-72 CMAYX E12.5 Maximum frequency (Hertz).

Omit card-3 if NPLTFL = 0 on card-2.




COMPUTE FLUTTER Cards

This control card causes the computer to enter the flutter sequence for equations of motion
on the form 2 format. Disk files reserved when this option is used in QR are TAPES,
TAPE6, TAPE7, and TAPEIO.

COMPUTE FLUTTER card-1

KEYWORD/
COLS. VARTABLE FORMAT DESCRIPTION
1-80 [COMPUTE FLUTTER | BATO Keyword indicating that flutter calculations will be performed
{CF} using the equations of motion in form 2.
COMPUTE FLUTTER card-2
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-5 NTAPE 15 Number of tape unit containing airforce matrices., If
negative, the tape will be rewound before any file or
matrix skipping eccurs.
6-10 NFTLE 15 Humber of end-of-files to skip past. A minus number will
backspace that many files.
11-15 HMAT 15 Number of matrices to skip past on tape. This number must
be positive.
16-20 NK I5 The number of airforce matrices given for each value of inverse
gamma/altitude specified with AIRFORCE COEFFICTEMTS
control card.
21-25 NEOFK 15 If NEQFK = 0, print matrices read from tape.
1f NEOFK = 1, do not print matrices.

Each matrix on NTAPE is a real matrix of size M by 2M. There will be a total of N matrices

on this tape where N is the number of reduced frequencies. Each row of the aerodynamics matri
matrix has 2M columns because columns are stored real, imaginary, real, imaginary, etc. The

N matrices will be read for each inverse gamma/altitude loop of the flutter option.
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COMPUTE FLUTTER AND ROOT LOCUS Cards

This control card causes the computer to enter the flutter root locus sequence for the
equations of motion in form 2 format,

COMPUTE FLUTTER AND ROOT LOCUS card-!

| AND ROOT LOCYS

{CEARL }

KEY\ORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 ] COMPUTE FLUTTER | 8A10 Keyward indicating that flutter and root locus calculations will

be performed using the equations of motion in form 2.

COMPUTE FLUTTER AND ROOT LOCUS card-2

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 NTAPE 15 Number of tape unit containipg afrforce matrices, If
negative, the tape will be rewound before any file or
matrix skippbing occurs.

6-10 NFILE 15 Humber of end-of-files to skip past. A wminus number will
backspace that many files.

11-15 NMAT 15 Number of matrices to skip past on tape., This number must
be positive.

16-20 NK 15 The number of airforce matrices given for each value of inverse
gamma/altitude specified with ATRFORCE COEFFICIENTS
control card.

21-25 NEOFK 1% If NEOFK = 0, print matrices read from tape.

If NEOFK = 1, do not print matrices.




COMPUTE FLUTTER 2 Cards

This control card causes the computer to enter the flutter sequence for the equations of
motion in the form 1 format. Disk files reserved when this option is used in QR are TAPES,
TAPE6, TAPE7 and TAPE10. The following data cards are read after the QR program
encounters a COMPUTE FLUTTER control card.

COMPUTE FLUTTER 2 card-1

B KEYWORD/ :
COLS. VARIABLE FORMAT DESCRIPTION
1-80 COMPUTE 8A10 Keyword indicating that flutter calculations will be performed
FLUTTER 2 using the equations of motion in form 1.
{CF2}

COMPUTE FLUTTER 2 card-2

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION

1-5 NTAPE 15 Number of tape unit containing airforce matrices. If negative,

the tape will be rewound before any file or matrix skipping occurs.

6-10 NFILE 15 Number of end-of-files to skip past. A minus number will

backspace that many files,

11-15 NMATR 15 Number of matrices on tape in sequence of increasing k values.
The k values of interest must 1ie within the range of the
Towest and highest k values on tape.

16-20 NK 15 Number of k value matrices (maximum=30) to be used for each
altitude specified in the UNSTEADY AIRFORCE COEFFICIENTS card.
The k values listed on card 2 must be in sequence of increasing
magnitude. Values of k matrices between those listed on tape
will be computed by Tinear interpolation. '

21-25 NEOFK I5 If NEOFK

0, [E(k)] on tape will be used in existing form.
If NEOFK = 1, [E(k)] on tape has been normalized by kZ;
the program will automatically multiply each [E(k)] by its k2

value before performing a V-g analysis.

26-30 NPRT 15 If NPRT

0, print the [E(k)] matrix used in the analysis.

If NPRT = 1, do not print the [E(k)] matrix.
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COMPUTE FLUTTER 2 card-3

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-12 KVALUE(1) E12.5

13-24 KVALUE(2) E12.5

25-36 KVALUE(3) E12.5 ( List of reduced frequencies for flutter analysis )
37-48 KVALUE(4) £E12.5

49-60 KVALUE(5) E12.5

61-72 KVALUE(6) £12.5

Card-3 is repeated until NK (card-2) reduced frequencies have been defined.

COMPUTE UNSTEADY FREQUENCY RESPONSE Cards

This control card causes the program to calculate the unsteady aerodynamics frequency
response using the equations of motion in form 1 format.

COMPUTE UNSTEADY FREQUENCY RESPONSE card-1

COLS.

KEYWORD/
VARTABLE

FORMAT

NESCRIPTION

1-80

COMPUTE

UNSTEADY

FREQUENCY

RESPONSE
{ CUFR }

8A10

Keyword indicating that a frequency response calculation will be
performed using the equations of motion in form 1.




COMPUTE UNSTEADY FREQUENCY RESPONSE card-2

KE YWORD/

CCLS. VARTABLE FORMAT DESCRIPTION

1-5 NTAPE I5 Number of tape unit containing airforce matrices. If nenative,
the tape will be rewound before any file or matrix skipping occurs.

g-1n NFILE 15 Mumber of end-of-files to skip past. A minus number will
tackspace the tape that many files.

11-15 NMAT 15 lNumber of matrices to skip past on tape. This number must be
positive.

16-20 NK 15 Number of rmatrices on tape tc be used for each altitude response
computaticn,

21-25 MCLOL 15 If NCLOL = 0, compute a closed loop response.

If NCLOL = 1, compute an open loop response.

If NCLOL = 2, a PSD and open loop response will be calculated.
2€-30 NFRLIM 15 If  NFRLIM = C, increment the frequency withir the limits dB=4

and $=10.

If NFRLIM = 1, ircrement the frequency witkir the Timits dB 2

and ¢=5.

If NFRLIM = 2, increment the frecuency within the lirits dB=6

and ¢=15,

31-35 NEGFK 15 If NEOFK =G, [E(k)] on tape will ke used in existira form.
If NEOFK =1, [E(k)] on tape has been normalized by k%: the
rrogram will automatically multiply each [F(k)] by its PZ value
before computing a response. The user is responsible for
correcting the dimensions to conform to the NR equaticns of
motion format.

36-4r NXMYI 15 Number of (xm’yi) combinations for closed Toop response analvsis.




Input additional cards of the sume format as card-2 for other (xm, yi) input/output
combinations.

COMPUTE UNSTEADY FREQUENCY RESPONSE card-3

If NCOL = | or 2 (card-2) omit this card.

KEYWORD/

COLS. VARIABLE FORMAT DESCRIPTION

1-5 NUKNOW 15 The number of "m" of the output coordinate Xn where "m" lies in
the range lsm¢n corresponding to the n x 2n characteristic
matrix.

6-10 MRHSV 15 The number "i" of the right hand side column vector (e.qg., i=]
for a single input problem); 1<i<3.

' 11-15 ~ NUPSD 15 If NUPSD = 0, do not compute a PSD for this (xm,y].) combination.

If NUPSD = 1, compute a PSD for this (xm,yi) combination.

The unsteady frequency response may be calculated for one to three different input vectors.
For each input vector for which the frequency response is desired, card-2 and card-3 are
repeated.

6.3.8 CYCLING CONTROL CARDS AND LABELING

This sct of QR control cards are used to define a block of data which may be repeated in the
data input flow, to re-title the case being processed, to define plot titles, and to terminate
execution.

e SEQUENCE The SEQUENCE card permits the user to assign an
arbitrary name to a set of sequential data cards.

e TITLE This card permits the case title to be changed.

e PTITLE This card permits titles to be written in the Boeing title

block (for use only on Boeing computers)

e IDPLOT This card permits plot identification information to be
read and must appear as the first card in the data deck.

e STOP Use this card defines the end of the data stack (not
required).



SEQUENCE Cards

Sets of control cards tend to appear often in a single computer run. The SEQUENCE control
control card set permits the user to assign an arbitrary name to a set of sequential data cards.
Subsequent references to that set of cards can be made by inserting a data card with the set
name into the card stack. Thus, the appearance of the name causes the same effect as if the
set of data cards had been inserted in the card stack. (For use on Boeing computer only).

SEQUENCE card-1

KEYWORD/
coLS. VARIABLE FORMAT DESCRIPTION
1-9 SEQUENCE Al0 Keyword indicating a repeatable block of input data is to be defined.
10-15 XXXXXX A6 A 1 to 6 character name assigned to the data block. Alphanumeric,

special symbols and blanks may be used for the name.

A typical set of cards is in the following example:

SEQUENCE $LOOP2
CRAMER REPLACE

10

COMPUTE ZEROS

FORM RATIO OF POLYNOMIALS
COMPUTE FREQUENCY RESPONSE
INTEGRATE

7

FORM RATIO OF POLYNOMIALS
COMPUTE TIME RESPONSE
INTEGRATE

0

REPLACE

END

Once the above sequence has been established, appearance of $LOOP2 (starting in card
column 1) will have the same effect as the 12 data cards after the SEQUENCE $LOOP?2

card and before the END card.

SEQUENCE card-2

KEYWORD/
coLs. VARIABLE FORMAT DESCRIPTION
1-80 END 8A10 Keyword indicating the end of a repeatable data block.
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TITLE Cards

This control card permits the case title to be changed. The title is originally entered on
BEGIN card-2 in the sequence initiated by the BEGIN control card. The case title is printed
with the root locus output and appears on all plots.

TITLE card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 TITLE {T } | 8A10 Keyword indicating a new job title will be read and used.
TITLE card-2
KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 TITLE 8A10 TITLE (The available symbols are: 0-9, A-Z, =+ -/ .- , () $ *)

PTITLE Cards

This control card permits titles to be written in the Boeing title block. (For use only on
Boeing computers.)

PTITLE card-1

KEYWORD/
COLS. VARIABLE FORMAT DESCRIPTION
1-80 PTITLE {PT} | 8A10 Keyword indicating a set of plot titles will be read.
PTITLE card-2
KEYWORD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-5 IEND I5 Numbers of titles to put into the title block (maximum=3).

If IEND = 0, plot title will be supressed.
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PTITLE card-3

KEYLOPD/
CoLS. VARIABLE FORMAT DESCRIPTION
1-40 K1ITLE 4110 TITLE (The available symhols are: 0-9, A-Z, =+ -/ . , ( ) $ *)

Repeat card-3 as many times as necessary to list the specified number of titles as indicated
by IEND (card-2). Omit card-3 if IEND (card-2) is zero.

IDPLOT Cards
This control card defines user identification information for any plotting to be done. The
card set must appear as the first card set in the data deck. Use this card set only once per

computer run.

IDPLOT card-1

KCYWORD/
COLS. VARTIPLL FORMAT DESCRIPTION
1-80 IDPLOY 8A1C Keyword indicating plot identification data is being input.

IDPLOT card-2

KEYWCRD/
COLS. VARIABLE FORMAT NESCRIPTION
1-30 ROW(1) 3A10 User's name.
31-40 ROW(4) A0 Lea statiorn.
41-50 ROW(5) AQ Phone number.
STOP Card

Use this card only at the end of the data stack (optxonal) This card causes an end-of-file
mark to be written on TAPE99.

STOP card-1
KEYWCRD/
COLS. VARIABLE FORMAT DESCRIPTINN
1-80 STOP 8A10 Keyword indicating the end of the data stack.

One end-of-file mark is written onto TAPE99.
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Requirements Card Reference
or Function Key Words and/or Variables Format Card Set
PROBLEM INITIALIZATION
If plotting is to BEGIN  {B} 8A10 card-1
be done, IDPLOT
card set should Title{optional) 8A10 card-2
appear before BEGIN
card set. MATORD MATDE HGR  HODIAG  UMITS 515 card-3
INPUT OF MATRIX AMD VECTOR POLYNOMIALS
Mat. polyn. read MATRIX {M} 8A10 card-i
from cards. End
input with blank II 4 KK U(II,Jdd,KK) - 4(312, card-2
card. E14.7)
Complex mat. MATRIX COMPLEX  {MC} 8A10 card-1
polyn. read from
cards. End input 11 30 KK U(II,JJ,KK)Re U(II,JJ,KK)Im 2(312, card-2
with blank card. E14.7,6X,
£14.7)

Card input for a CONTINUQUS MATRIX {CON} 8A10 card-1
particular par-
tition of the MATORD MTDEG 215 card-2
mat. poly.

u(1,1,MTDEG)  U(1,2,MTDEG) 6£12.5 card-3
Mat. poly. read READ MATRIX TAPE  {RMT} 8A10 card-1
from tape. End
input with blank NTAPE  NFILES NMAT MATDG  HPRT 515 card-2
card.
Vector polyn. read VECTOR  {V} 8A10 card-1
from cards. End 0 32 VEC(J1,92) 4(12,2X, card-2
input with a 12,614.7)
blank card. ’ .
Vec. polyn. read READ VECTOR TAPE  {RVT} 8A10 card-~1
from tape. End in-
put with blank card. NTAPE  NFILES MMAT  MATDG  NPRT 515

card-2

AAVIINS dIVI LNdINI 6°€9
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Requirements Card Reference
or Function Key Vords and/or Variables Format Card Set
MATRIX OPERATIONS
Replace elem. of REPLACE  {R} 8A10 card-1
mat. polyn. End
input with blank II JJ KK U(II,dd,KK) 4(312, card-2
card. E14.7)
Repiace elem. of REPLACE COMPLEX  {RC} 8A10 card-1
complex mat. polyn.
End input with blank IT JJ KK U(II,JJ,KK)Re U(II,JJ,KK)Im 2(312, card-2
card. £14.7,6X,
£14.7)
Replace elem. of REPLACE VECTOR  {RV} 8A10 card-1
vector polyn. End
input with blank Jl J2  VEC(J1,J2) a(Iz,2x,12, card-2
card. E14.7)
Rep. col. of mat. CRAMER REPLACE  {CR} 8A10 card-1
polyn. with vec.
polyn. J L 215 card-2
Eiim. dynamic char. DELETE  {DE} 8A10 card-1
of selected modes
from mat. poly. M I5 card-2
KFIXi  KFIX2 KFIX3 1615 card-3
Elim. dynamic char. DELETE AND REDUCE  {DAR} 8A10 card-1
of selected modes
from mat. polyn. and M 15 card-2
reduce size of mat. T615 4-3
polyn. KFIX1  KFIX2  KFIX3 card-
Elim. selected TRUNCATE  {TRU} 8A10 card-1
modes from the
matrix polyn. M IS5 card-2
KFIX1  KFIX2 KFIX3 1615 card-3
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Requirements Card Reference
or Function Key Words and/or Variables Format Card Set
Elim. selected TRUNCATE AND REDUCE  {TAR} 8A10 card-1
modes from mat.
polyn. and reduce M 15 card-2
the size of the
mat. polyn. KFIX1  KFIX2 KFIX3 1615 card-3
ADDITION OF SENSOR EQUATIONS

Define BS Toc. BODY STATIONS {BS} 8A10 card-1
at which incoming
sensor equations NBS I5 card-2
are defined.
Sensor equations SENSOR  {SE} 8A10 card-1
read from tape

NTAPE NFILE NMAT ICYCLE 415 card-2
Desired loc. of sen. BS E12.5 card-3
Loc. of sen. in IQROW IQPOW ILIM 315 card-4
mat. polyn.

OUTPUT OF MATRIX POLYNOMIAL

Print mat. polyn. PRINT {P} 8A10 card-1
Punch mat. polyn. PUNCH  {PU} 8A10 card-1
Print a portion of PRINT PARTIAL MATRIX {PPM} 8A10 card-1
the mat. polyn.

n 12 13 14 16 615 card-2
Magnetic file SPACE TAPE  {ST} 8A10 card-1
manipulation.

NTAPE  NFILE  NMAT 315 card-2
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Requirements Card Reference
i or Functions Key Words and/or Variables Format Card Set
[
5 CALCULATION OF MATRIX ROOTS
Calc. roots of COMPUTE  {CO} 8A10 card-1
matrix polyn.
Calc. roots and COMPUTE POLES  {CP} 8A10 card-1
store as poles. e b
Calc. roots and COMPUTE ZEROS  {CZ} gA10 card-1
store as zeros. —_—— —
Caic. roots and COMPUTE LOCUS  {CL) BATO card-1
save for plotting. —_— 2=
CALCULATION OF ROOT LOCUS
Definition of GAINS  {G} 8A10 card-1
gain magnitudes
and phases to be NGAIN  NPHASE 215 card-2
used for root
locus calc. GAIN(1)  GAIN(2) _ GAIN(3) 6E12.5 card-3
PHASE(1)  PHASE(2)  PHASE(3) 6E12.5 card-4
Def. of gain NPLOC I5 card-5
locations
IRCM(1)  IRCH(2)  IRCM(3) 4(312, card-6
[ 14X)
COMPUTE ROOT LOCUS  {CRL} 8A10 card-1
COMPUTE ROOT LOCUS WITH PREVIQUS POLES  {CRLWPP} 8AT10 card-1
COMPUTE ROOT LOCUS WITH PREVIOUS ZEROS  {CRLWPZ} 8A10 card-1
COMPUTE ROOT LOCUS WITH PREVIOUS POLES AND ZEROS  {CRLWPPAZ} 8A10 card-1
Charc. polyn. formed
for all root calc.
which come after this FORM POLYNOMIAL  {FP} 8A10 card-1
card.
Cancel FORM POLY- NO_FORM POLYNOMIAL  {NFP} 8A10 card-1

NOMIAL card.
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Requirements Card Reference
or Functions Key Words and/or Variables Format Card Set
ROOT LOCUS PLOTTING

Spec. for plotting PLOT ROOT LOCUS  {PRL} 8A10 card-1
root locus.

NPLOT NPHA  IRLPF 315 card-2
Omit if NPLOT=0. XLFT XRT YTOP  YBOT 4E12.5 card-3

EXECUTE PLOTS  {EP} 8A10 card-1
Root locus and
poles(marked with EXECUTE PLOTS WITH POLES {EPWP} 8A10 card-1
x's) are plotted.
Root locus and
zeros(marked with EXECUTE PLOTS WITH ZEROS {EPWZ} 8A10 card-1
o's) are plotted.
Root locus,poles
(x's) and zeros EXECUTE PLOTS WITH POLES AND ZEROS  {EPWPAZ} 8A10 card-1
(o's) are plotted.

STATE VARIABLE FORMATION
STATE {STA} 8A10 card-1
TRANSFER FUNCTION FORMATION
Add poles at INTEGRATE {I} 8A10 card-1
origin of T.F.
’ NINTEG 15 card-2

Add zeros at DIFFERENTIATE {D} 8A10 card-1
origin of T.F.

NDIFFR I5 card-2
Eliminate CANCEL  {C) 8A10 card-1
opole/zero pairs

XREAL  XIMAG CRATIO 3E12.5 card-2
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Reguirements Card Reference
or Function Key Word and/or Variables Format Card Set
Add scale factors DC GAIN  {DCG} 8810 card-1
to T.F.

NGAINP  NGAINZ 215 card-2
Omit if NGAINP=0. GAINP(1)  GAINP(2) GAINP(3) 6E12.5 card-3

| Omit if NGAINZ=0. GAINZ(1) GAINZ(2) GAINZ(3) 6E12.5 card-4
Form T.F. FORM RATIO OF POLYNOMIALS  {FROP} 8A10 card-1
TIME RESPONSE CALCULATIONS

Def. time point TIME INTERVALS {TI} 8A10 card-1
intervals

NTIME I5 card-2
"Repeat NTIME times TIMEI TIMED TIMEF 3E12.5 card-3

COMPUTE TIME RESPONSE  {CTR} 8A10 card-1
Stop forcing func. COMPUTE TIME RESPONSE WITH TAU  {CTRWT} 8A10 card-1
at t=TAU

TAU E12.5 card-2
Define forcing func. FORCING FUNCTION  {FF} 8A10 card-1
to use in convol.

NFF I5 card-2

TIMEL(1) TIMEI(2) TIME(3) 6E12.5 card-3

FFT(1)  FFT(2) FFT(3) oklZ.b5 card-4

COMPUTE CONVOLUTE  {CC} 8A10 card-1

TIME RESPONSE OUTPUT

Cont. time resp. TIME RESPONSE  {TR} 8A10 card-1
and resid. printout.

ITIME3 I5 card-2
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Requirements Card Reference

or Function Key Word and/or Variables Format Card Set

Plot options PLOT TIME RESPONSE  {PTR} 8A10 card-1
ITIMET ITIME2Z ITIME3 ITIME4 415 card-2

Omit if ITIME3=0. Title 8A10 card-3

Omit if ITIME4=0 YQTOP(1)  YQTOP(2) 2E12.5 card-4

FREQUENCY RESPONSE AMD PSD CALCULATIONS

COMPUTE FREQUENCY RESPONSE  {CFR} BA10 card-1

Define gust GUST SPECTRUM  {GS} 8A10 card-1

spectrum for PSD

calc. SIGMAX L VvV X Y K1 6E12.5 card-2
K2 K3 2E12.5 card-3
COMPUTE PSD  {CPSD} 8A10 card-1

FREQUENCY RESPONSE AND PSD QUTPUT

Print cont. FREQUENCY RESPONSE  {FR} 8A10 card-1
IFRQ1 IFRQ2 215 card-2

Plot options PLOT FREQUENCY RESPONSE {PFR} 8A1b card-1
NPLOTF I5 card-2

R p i

pepeat NPLLTTELa™eS | TOMGAL(I)  IOMGAP(I)  IDBTOP(I)  IBONYQ(I)  IDBSCL(I) 515 card-3
PLOT PSD  {PPSD} 8A10 card-1
NPSPP  IDUMMY  IPSD1 IPSD2 415 card-2

Repeat NPSPP times

Omit if NPSPP=0. FLR(I,1)  FLR(I,2) 2E12.5 card-3

Omit if IPSD1=0 .

or NPSPP=(. Tittle 8A10 card-4
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Requirements Card Reference
or Function Key Word and/or Variables Format Card Set
UNSTEADY AERODYNAMIC COEFFICIENT PARAMETERS

For form-2 eqs. -

For Tor AIRFORCE COEFFICIENTS  {AC} 8A10 card-1

No. of inver.

o vaver NIGFAA I5 card-2

Inver. gasma val. GINVRS(1)  GINVRS(2)  GINVRS(3) 6E12.5 card-3

Altitude val. AT(1) ALT(2) ALT(3) 6E12.5 card-4

Ref. lenght RFRL £12.5 card-5

For fore-1 eq. UNSTEADY AIRFORCE COEFFICIENTS {UAC) 8A10 card-1

ormat —

Cond. par. M RFRL CF RHO V 5E12.5 card-2

No. of alt. val. NALT 15 card-3

Ait. val. AT(1) ALT(2) ALT(3) 6E12.5 . card-4
FLUTTER, ROOT LOCUS AND FREQUENCY RESPONSE CACULATIONS

For form-2 eq. COMPUTE FLUTTER  {CF} 8A10 card-1

format. COMPUTE FLUTTER  {CF.

Mat. read parm. NTAPE NFILE NMAT NK  NEOFK 515 card-2

;“' form-2 eq. COMPUTE FLUTTER AND ROOT LOCUS  {CFARL} 8A10 card-1

ormat. _

Mat. read parm. NTAPE NFILE NMAT NK  NEOFK 515 card-2

For form-1 eq.

For Tor COMPUTE FLUTTER 2  {CF2} 8A10 card-1

Mat. read pram. NTAPE NFILE NMATR NK  NEOFK  NPRT 615 card-2

Red. freq. val. KVALUE(1)  KVALUE(2)  KVALUE(3) 6E12.5 card-3
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Requirements Card Reference
or Functions Key Word and/or Variables Format Card Set
ig;ng‘;rm" €q- COMPUTE_UNSTEADY FREQUENCY RESPONSE {CUFR} 8A10 card-1
':gf:"ggg‘p'”a'“' and NTAPE  NFILE NMAT NK NCLOL  MFRLIM  NEOFK  NXMYI 815 card-2 .
NUKNOW  NRHSV  NUPSD 315 card-3
FLUTTER SOLUTION PLOTTING
Plot opt. PLOT FLUTTER  {PF} 8A10 card-1
NPLTFL 15 card-2
Omit if NPLTFL=0. GMIN GMAX  VMIN  VMAX CMIN  CMAX 6£12.5 card-3
INPUT CYCLING AND LABELING OPTIONS
Input data block SEQUENCE XXXXXX A10,A6 card-1
def.
END 8A10 card-2
Run title change TITLE (T} 8A10 card-1
opt.
Title 8A10 card-2
Plot title opt. PTITLE {PT} 4a10 card-1
IEND I5 card-2
Repeat IEND times. .
omit if IEND=0. Title 8A10 card-3
If plotting is to IDPLOT 8A10 card-1
be done, IDPLOT c.
should be placed ROW(1)  ROW(2) ROW(3) ROW(4) ROW(5) 5A10 card-2
before BEGIN c.s.
STOP_ {570} 8A10 card-1




6.4 EXAMPLES OF REQUIRED CARD SETS FOR SOME TYPICAL PROBLEMS

When a card set is listed all associated data cards must be included. In the examples 1 thru
7 the matrix polynomial and vector polynomial are read from cards. In examples 8 and 9,
the matrix polynomial is read from magnetic file.

1. Compute the roots of the matrix.

BEGIN
MATRIX
COMPUTE

2. Compute a root locus.

BEGIN

MATRIX

GAINS

COMPUTE ROOT LOCUS

3. Transfer function formation.

BEGIN

MATRIX

COMPUTE POLES

CRAMER REPLACE

COMPUTE ZEROS

FORM RATIO OF POLYNOMIALS

4. Compute a time response.

BEGIN

MATRIX

COMPUTE POLES

CRAMER REPLACE

COMPUTE ZEROS

FORM RATIO OF POLYNOMIALS
TIME INTERVALS

COMPUTE TIME RESPONSE

5. Compute a time response using the convolution integral.

BEGIN

MATRIX

COMPUTE POLES

REPLACE

COMPUTE ZEROS

FORM RATIO OF POLYNOMIALS
FORCING FUNCTION

TIME RESPONSE

PLOT TIME RESPONSE
COMPUTE CONVOLUTE
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6. Compute frequency response.

BEGIN

MATRIX

VECTOR

COMPUTE POLES

CRAMER REPLACE

COMPUTE ZEROS

FORM RATIO OF POLYNOMIALS
COMPUTE FREQUENCY RESPONSE

7. Compute the PSD of a response.

BEGIN

MATRIX

COMPUTE POLES

REPLACE

COMPUTE ZEROS

FORM RATIO OF POLYNOMIALS
GUST SPECTRUM

FREQUENCY RESPONSE

PLOT PSD

COMPUTE PSD

8. Perform a flutter analysis using equations in form 2 format.

BEGIN

AIRFORCE COEFFICIENTS
READ MATRIX TAPE
PLOT FLUTTER

COMPUTE FLUTTER

9. Perform a flutter analysis using equations in form 1 format.

BEGIN

READ MATRIX TAPE

PLOT FLUTTER

UNSTEADY AIRFORCE COEFFICIENTS
COMPUTE FLUTTER 2
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6.5 OUTPUT DATA
6.5.1 PRINTED OUTPUT DATA

The program will initialize and terminate the printed output, with special pages indicating
the program name, version, and date of run. An attempt has been made throughout this
document to describe outputs generated by the program.

6.5.2 FILE OUTPUT

QR has the capability of creating an output file of plotting vectors. When requested by the
user, plotting vectors are generated from each frequency response, power spectral density,
time response, root locus, and flutter response solution completed. The plotting vectors are
written on TAPE92. The general format for TAPE92 is shown in figure 6. The stacking
order of vectors on TAPE92 is dependent upon the solution order used in the QR input
data. Note that the general arrangement of plotting vectors consists of an identification
array (VIDA), followed by 2 through 6 vector arrays. The number of vector arrays is a
function of the type of solution being plotted.

TAPE92 is written in READTP/WRTETP format (ref. 1).

Size of Matrix Matrix Description
32x 1 { VIDA} Vector identification array
Mx 1 { PV1 } First plot vector
Mx1 { PV2 } Second plot vector
M x 1 {pvs } Third plot vector
Mx 1 { PV4 } Fourth plot vector
Mx 1 { PV5 } Fifth plot vector
Mx 1 { PV6 } Sixth plot vector
END-OF-FILE
where: \

M = the number of points to be plotted. Matrices VIDA thru PV6 are repeated for each
solution for which plotting is requested.

The number of plot vectors present and their contents vary with the type of solution.

The minimum number of plot vectors is two and the maximum number is six.

Figure 6. — Contents of TAPE92
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Table 1. — TAPE92 Matrix Definition for a Frequency Response Solution

Matrix Elements Description
VIDA VIDA (1) 8 words from BEGIN or TITLE
thru data set
VIDA (8)
VIDA (9) 12 words from PTITLE
thru data
VIDA (20)
VIDA (21) Minimum frequency for plot
grid
VIDA (22) Maximum frequency for plot
grid
VIDA (23) Minimum dB
VIDA (24) Maximum dB
VIDA (25) Not used
thru
VIDA (32)
PV1 1thruM Frequency array in radians
PV3 1thru M dB value array
PVv4 1 thru M Array of phase angles in
degrees
PV5 — Not present
PV6 — Not present

The READTP/WRTETP variable NAME (ref 1) is equal to 1 for this solution.

110




e

Table 2. — TAPEG2 Matrix Definitian far a Power Spectral Density Solution

Matrix Elements Description
VIDA VIDA (1) As defined in table 1
thru
VIDA (20)
VIDA (21) Minjmum frequency for plot grid
VIDA (22) Maximum frequency for plot grid
VIDA (23) Minimum value of PSD of
response
VIDA (24} Maximum value of PSD of
response
VIDA (25)
thru PS50 plot label
VIDA (32)
PV1 1 thru M Frequency in radians
PV2 T thru M Response spectrum values
PV3 1 thru M Percent PSD
PV4 — Not present
PVE - Not present
PV6 - Not present

The READTP/WRTETP variabie NAME {ref 1) is equal to 2 for this solution.
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Table 3. — TAPESZ Matrix Definition for a Time History Solution

Matrix Elements Descriptian
VIDA VIDA (1) As defined in table 1
thru
VIDA (20
VIDA {21) Minimum time for plot grid
VIDA {22} Maximum time for plot grid
VIDA {23) Minimum time response for
plot grid
VIDA (24) Maximum time response for
plot grid
VIDA (25)
thru Ordinate label for plot grid
VIDA (28}
VIDA (29) Not used
thru
VIDA (32)
PV 1 thru M Time values
Pyv2 1 thru M Response values
PV3 - Not present
PV4 - Not present
PV5 - Not present
PV§ - Mot present

The READTP/WRTETP variable NAME (ref 1) is equal ta 3 for this salution.




I ———
Table 4. — TAPES2 Matrix Definition for 8 Root Locus Solution

Matrix Elements Description
VIDA VIDA (1) Same as defined in table 1
thru
VIDA (20)
VIDA {21) Minimum real axis for piot
grid
VIDA {(22) Maximum real axis for plot
grid
VIDA (23) Minimum imaginary axis
for plot grid
VIDA (24) Maximum imaginary axis
for plot grid
VIDA {25}
thru Not used
VIDA {32}
PV1 1 thru M Real values of loci
PV2 1 thruM Imaginary values at loci
PV3 1 thru M Real values of pole(s)
Pv4 1 thru M imaginary values of pole(s)
PVS 1 thru M Real values of zero(s)
PVé 1 thru M Imaginary values of zero(s)

The READTP/WRTETP variable NAME {ref 1) is equal to 4 for this solution.
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Table 5. — TAPES2 Matrix Definition for a Flutter Solution

Matrix Elements Description
VIDA VIDA (1) Same as defined in table 1
thru

VIDA {20)

VIDA {21) Minimum specified velocity in
knots (kilometers/hr) for plot
grid

VIDA (22} Maximum specified velocity in
knots {kilometers/hr} for plot
grid

ViDA (23} Minimum damping value for
plot grid

VIDA {24) Maximum damping value for
plot grid

VIDA (25) Minimum Hertz value for plot
gric

VIDA (26} Maximum Hertz value for
plot grid

VIDA (27)

thru Not used
VIDA (32)
PV 1T thru M Velocity values in kilometers/hr
{knots)
Pv2 1thru M Damping values
PV3 1 thru M Hertz values
Pv4 -~ Not present
PV5S ~ Not present
L PVB ~ Not present

The READTP/WRTETP variable NAME {ref 1} is equa) to 5 for this solution.
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1.

10.

11.

1.

2.

6.6 RESTRICTIONS

QR problem size maximums are shown below:

The number of eigenvalues for a matrix cannot exceed 140. (Default 60}

. READTP matrices cannot exceed 70 x 70. (Default 30 x 30)

. The maximum number of time history values is 1000.

. The maximum number of repeated poles in the time response calculations is 6.

. The maximum number of root locus or flutter eigenvalues points for plotting is 2500.
. The maximum vector size is 120. |

. The maximum gains number of gain magnitudes which can be used to define complex

gains is 48.

. The maximum number of phase values which can be used to define complex gains is 6.

. The maximum gain locations array size is 8.

The maximum number of body stations at which sensor data may be input is 8.

The maximum number of data points which can be used to define an arbitrary forcing
function is 12.

. The maximum number of reduced frequencies is 70. (Default 30)

6.7 DIAGNOSTICS

This section contains a listing of all diagnostics that may be printed as a result of errors in
input data. In most cases, corrective action taken by the program is explained in the
diagnostic. In other cases, no corrective action is taken. In any case, an effort has been made
to make the diagnostics as self-explanatory as possible. Only tape positioning errors will
cause termination of the execution.

XX's represents data supplied by the program.

The diagnostics are:

(THIS IS A COMMENT CARD)

THE INPUT MATRIX 1S SINGULAR

Note: When QR detects a singular matrix, the matrix that was being rooted is brought
back into core storage, a trace flag is set, and QR reattempts the specified rooting again.
Each major step performed by the program is printed onto the output file until the
singularity condition is printed (e.g., ROW 1 IS ZERO).
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6.

h

16.

18.

. ROOT LOCUS IMPOSSIBLE WITHOUT GAINS
. ASSIST NOT FUNCTIONAL UNDER KTS (KRONOS TIME SHARING)

. THE ITERATION COUNT FOR ROOT (X.XX, X.XX) IS XX.

ELEMENT X REJECTED

Note: X is 1, 2.3 or 4 und refers to columns 1-20. 21-40, 41-60 or 61-80 respectively
of & mutrix elements card.

. NO BEGIN CARD

JLLEGAL MATRIX

Note: QR has attempted to write the input matrix on a disk file and cannot because
the length of it is less than or equal to zero. This generally occurs if the BEGIN card
and its respective data is incorrect; however, other program input errors may also
cituse this comment to be printed.

. TAPE SPACING ERROR

Note: Program execution is terminated because of this error.

D XXXXXXXXXX SEQUENCE NOT FOUND

. THE NUMBER OF ROWS OF THE INPUT MATRIX DOES NOT EQUAL THE

NUMBER OF BODY STATIONS

. THE MATRIX DIMENSIONS ON TAPE EXCEED THE MATRIX DIMENSIONS OF

THE EQUATIONS

. THE MATRIX DIMENSIONS ON TAPE ARE IN ERROR

. ELEMENT X X X.XX REJECTED

Note: A vecior element has been incorrectly specified.

. ZERQS CANNOT BE FOUND

THE FIRST CARD IN A QR EXECUTION SHOULD BE AN EXACT DUPLICATION
OF YOUR ACCOUNT CARD. THE FOLLOWING WAS USED.

. THE NUMBER OF POLES MUST BE GREATER/EQUAL TO THE NUMBER OF

ZEROS FOR PROPER COMPUTATION OF TIME RESPONSE.

NO TIME RESPONSE, MULTIPLE POLES.



19.

20.

30.

31.

32.

33.

34.

35.

A MAXIMUM OF 1000 TIME POINTS WILL BE CALCULATED FOR TIME
RESPONSE.

THE FREQUENCY RESPONSE CANNOT BE DONE WITHOUT POLES OR ZEROS.

. QR CANNOT PLOT ALL FLUTTER POINTS.
. QR CANNOT PLOT ALL ROOT LOCUS POINTS.

. ERRORS IN FREQ. GRID PTS., NPLOTF SET 0.

Note: The Bode/Nyquist plot definitions have been incorrectly entered; the
user should check the data cards following the PLOT FREQUENCY RESPONSE
command.

. ERROR IN GUST SPECTRUM, GUST SET 1.

. THE NUMBER OF GAIN LOCATIONS WAS LE 0, QR IS ASSUMING 1.
. ERROR IN GAINS, NUMBER GAINS = PHASES = 0.

. ERROR IN DC GAIN.

. ERROR IN PLOT ROOT LOCUS, NPLOT =0.

. SCRATCH STORAGE ARRAY EXCEEDED, PROGRAM TERMINATING.

Note: The root array in QR has been filled. The user should review his problem
for correctness and determine the number of roots he expects.

ERROR IN BODY STATION INPUT, NBS = 0.
NBS = 0, SENSOR OPTION IMPOSSIBLE.

*H*WARNING*** XXX XXXX HAVE BEEN SPECIFIED SUBROUTINE BIGGER
MUST HAVE BEEN SUPPLIED TO OBTAIN SUCCESSFUL EXECUTION.

Note: This diagnostic will occur for overflow of the following arrays in the QR

program: VECTOR, GAIN, FORCING FUNCTION, K VALUE, PHASE, GAIN
LOCATIONS, BODY STATIONS, ROOTS and RWBUFF.

ERROR READING TAU, NO TIME RESPONSE.

THE VALUE OF TAU WAS LESS THAN OR EQUAL 0, TIME RESPONSE WITH
NO TIME DELAY FOLLOWS.

ERROR IN FREQUENCY MIN, MAX OR INC.
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36. FREQUENCY INC. SPECIFIED LESS THAN OR EQUAL 0.

37. ROOT LOCUS PLOT ERROR, XLEFT (XXX.XX) IS GREATER THAN XRIGHT
(XXX.XX). PLOT NUMBER XX SKIPPED.

25. ROOT LOCUS PLOT ERROR, YBOT (XXX.XX} 1S GREATER THAN YTOP
(XXX.XX), PLOT NUMBER XX SKIPPED.

39. THERE MAY BE MORE ROOTS THAN QR CAN STORE WITHOUT
SUBROUTINE BIGGER.

6.7.1 READTP ERROR CODES
Errar Code

=0 It no errors are detected during reading,

1000+ [t an FSF (forward space file) error occurred, where | is the number of
file marks remaining to be skipped when an end-of-information was
encountered.

=2 [f the number of matrices or files to be skipped, before reading starts, is
tess than zero.

=3 If the dimensioned number of rows in the matrix is less thun or equal to zero.
3000+I1 it an FSR (forward space record) error gccurred, where I is the number of

records remaining to be skipped when either an end-of-file or end-of-informa-
tion was encountered.

=4 Number of rows in the matrix is greater than the dimensioned row size in
the program.

=5 If the name check failed.

=6 If the number of rows in the matrix (M) times the number of columns (N} is
greater thap the buffer size, or M¥N=0,

=17 An end-of-file was read. If it occurs while reading the matrix 1D, no information

is stored in the user's area. If it occurs while reading the matrix. the [D infor-
mation will be stored. Note that the records will always be in pairs and an
end-of-tile should always be encountered with the ID record.
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6.7.2 WRTETP ERROR CODES

Error Code

=0

= 1000+I

= 3000+1

If no errors are detected during writing.

If an FSF (forward space file) error occurred, where 1 is the number of
file marks remaining to be skipped when an end-of-information was
encountered.

If the number of matrices or files to be skipped, before writing starts, is less
than zero.

If the dimensioned number of rows in the matrix is less than or equal to zero.
If an FSR (forward space record) error occurred, where I is the number of
records remaining to be skipped when either an end-of-file or an end-of-infor-

mation was encountered.

If the actual number of rows is greater than the dimensioned number of rows
in the matrix.

If the number of rows in the matrix (M) times the number of columns (N) is
greater than the buffer size.

6.8 USE OF USER-SUPPLIED SUBROUTINES

There are three additional control cards which QR will recognize. However, the user must
supply compiled FORTRAN subroutines in order to execute them correctly. The three
control cards are:

Control Card Action Initiated by QR

CALL MUSER Branch to SUBROUTINE MUSER

CALL VUSER Branch to SUBROUTINE VUSER

CALL USERSB Branch to SUBROUTINE USERSB
SUBROUTINE MUSER

The principal purpose of subroutine MUSER is to define elements of the square polynomial

matrix. Thus CALL MUSER performs the same function as MATRIX or REPLACE
control cards. '

SUBROUTINE MUSER (A, M, N, IMAT)
COMPLEX A(M, M, N)
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where:

A is a complex matrix whose dimensions are M x M x N.
M is the row and column dimension of the A matrix.
N is the highest power of s plus 1.

IMAT is a count of the number of times the CALL MUSER data card has been used,
thus IMAT would be an integer 1 upon the first entry into MUSER.

A sample of a FORTRAN listing for subroutine MUSER is shown in figure 7.

SUBROUTINE MUSER({A,MQyNQ, IMAY)
COMPLEX A(MQ.MQ,NQ)

SET UP NOMENCLATURE T CONVENIENTLY REFERENCE S$0,51 ETC.MATRICES.

(3 XXzl

INTEGER S0,S1+52,53,54

DATA SOsS1952153954/71¢2+394,%/

NAMEL I1ST /VALUES/S B oK oKF o HoVPK o GHoALPHAG o I XX o T2Z24IXZ,CLB,CLP,CLR,y
LCLOAG+CLORGyCNBoCNBDyCNP (CNR(CNDAS (CNDRG,CYB,CYP,CYR,CYDAG,CYDRG

DECLARE ALL REAL VARIABLFS BEGINNING WITH 1,J,K,LoM/N REAL.
REAL IXZoIXXoIZZyMyL1oL2,MACH,K, XF

ZERD THE A MATRIX UPON FIRSY ENTRY.ON 2ND ENTRY,REPLACE ELEMENT
L1,16,5%%2, FDR ENTERIES GRECATER THAN 2,THF A MATRIX IS ZEROFD,
NAMELIST DATA 1S READ AND THE ENTIRE A MATRIX IS RECALCULATED.
SUBROUTINE CLEAR WILL ZERO AN ARRAY.IN THE CALLING SEQUENCE BELOW
THE A MATRIX IS THE ARRAY AND IT IS ZEROED FOR MeM&N®2 ELEMENTS,
THE INTEGER 2 IS FDR THE COMPLEX DELLARATION OF A.

OO OON

IF{IMAT . EQ.2) GO TO 100
CALL CLEAR {A,MQ®MQ*NQ*2)

FETCH AND READ NAMELIST INPUT VARIABLES USING SUBROUTINE ASSISY

[aXaXal

CALL ASSIST
READ(7.VALUES])
DGTRD=3.1415/180,
ROTOG=180,/3,.1413
CLOR=CLNRG*RDTDG
CLNDA=CLDAG*RDTDG
CNDR=CNNDRG*RDTDG
CNDA=CNDAG*RDTDG
CYDR=CYDRG*RODTDG
CYDA=CYNAG*RDTDG
FTXKN=6080.7/3600,
VE »VPK&F TKN
VP=VPK*F TKN
M=GW/32.174
ALPHA=ALPHAG*DGTRD
LUE=D

NOTE THAT VUSER IS USED TO CALCULATE DYNAMIC PRESSURE AND MACH
NUMBER RATHER THAN VECTIR ELEMENTS.

(s Xz Nulal

CALL VUSER(HoVE+LUE,MACH,QC,VP)
UBN=COS ( ALPHA)eYP
WBO=SIN(ALPHA ) oVP

Q=QC

PRINT VARIOUS AIRPLANE CONDITINNS WHICH HELP BUILD THE A MATRIX.

e ety

WRITE( 6, 6000) VPyM, ALPHA s QMACH,DSTRD,FTKN,RDTDG,UB0,WB0,CLDR,

Figure 7. — FORTRAN Listing of Subroutine MUSER
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100
900

6000 FORMAT(SHOVP =,F6.1¢5H M=,F9,1,9H ALPHA=,FB.5+5H Q=sFbel,

LCLOA,CNDRyCNDA,CYDR,CYDA
MATRIX DEFINATION
Al1e1ySl)m),
Al1y2,S1)n=1IXZ/1XX
Al1,3,S0)==QeS¢B/7IXX
A(1,4,5S0)=Q¢SeB*SINCALPHAD/ZE XX
Al2,1,50)=-WB0
Al 2,2,50)=UB0
Al2:5¢51)=],
Al246,50)5-QeS/N
A{2:,T7,5001m-32.2
Al3y2.S2¥m=IXZ/122
Al3,2,51)=1,
Al3,3,50)=-0%SeBeSINIALPHAN/IZE
Al3,4,50)=-QeS5¢B/122
A{4y1,50)=-1,
Al&4,7,S11=1,
Al4,8,51)=-SIN{ALPHA)
A(542450)=-1,
Al5,8,51)s1,
Al643,450)=1,

- A{6¢9,50)==~CLB

Al6,10,5S0)=~CLP#0,5¢B/VP
Alby11,5S0)==CLR®0,53%B/VP
A{6+12,50)}=-CLDR
Al6+13,50)=-CLOA
AlT+6450)=1.
Al7:9,S0)~-CYD
A(T,10,50)s~-CYP®0,508/VP
AlT,11,50)=-CYR#0,5+B/ VP
A(T+12450)=-CYDR
Al8,4,50)]1,
A{8,9,50)=-CNB

AL 2, 10,50)=-CNP20,5¢B/VP
Al R, 11,50)==CNR&O,5eR/VP
A1 8,12,50)=~(NDR
ALE,13,50)=-CNDA
A(8,09,5112-CNBD*0,5¢8/VP
A109,1,50)=-1,
A1N9,2,50)u-SINIALPHA)
AL09,10,50)=1,
ALLO,1,5SN)=SINCALPHAD
A{10,2,50)=-1,
Af10,11,50)=1,
Al11,8,52)1=-57,.3%0. 544K
Al11.14,52)=.74
A(11,14,S11=3,
Al11,14,50)=1,
A(12,14,50)=~-1,
A(12,15,S50)=1.
A(124164S0)=1,
A4012,17,50)=1.
Al13,15,50)1=-21,%
Al13,18,51)=1,
Al14,17,50)=1,
Al14,17,51)=,008%
Al14,18,50)=-1.5
A(15,16,51)=85%,
A(15,16,50)=1,
A{154,17,S0)=-8,
AL16412,50)=1,
Al16,12,5101=.09
A(16,18,50)=-,216
Af17,13,50)=1,
Al18,5,50)==1,/VP
A{18,9,50)=1.

GO TO 900
Alllo14,S2)m .84

RETURN

1 8H MACH =,F5.3/

2 8H NGTRD=,F9,646H FTKN=:FB8,499H ROTDG=oFT.3,6H UBO=Fb6als

3 6H WBO =4Fé6.1/

4 TH CLDR =oFB8.6,8H CLDA=FB.648H CNOR =,F9.6,0H CNDA =,F11.8,
S 8H CYDR=,FT.5,8H CYDA=,F11.8/1H )}

Figure 7. — (Concluded)
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SUBROUTINE VUSER

The principal purpose of subroutine VUSER is to define elements of column vector array.
Thus CALL VUSER performs the same function as VECTOR or REPLACE VECTOR

control cards.

SUBROUTINE VUSER (B, M, N, IVEC)

REAL B(M, N)
where:
B is real matrix whose dimensions are M x N.
M is the row and column dimension of the A matrix.
N is the highest power of s plus 1.
IVEC is a count of the number of times the CALL MUSER data card has been used.

A sample of a FORTRAN listing for subroutine VUSER is shown in figure 8.

SUNROUT INE VUSER{H, VE,LJE NACH,QC,VP)
SURROUT INE QCMACHIH,VC LUE,MACH,QC)
DYNAMIC PRFSSURE AND WACH NUMBER SUBROUTINE
RFAL MACH
1F (H,67,.,36089,} GO Y0 10
TR=1o~{3.5662%H/318.67/1000.)
DELTA= TR*¢5,2559
GO TO 20
10 1F (H,GT.65617.) GO YO 11
TR= 75187
DELTA=,22336¢EXP{(~-48.-.0634)¢(H-36089.1/1000.71000.1
GO 10 20
1l TR= (389.97+.54864¢(H-63517.0/71000.1/518,87
DEL1=518.67¢TR/389.97
DELTA= .05403 ¢DEL1%e-34,]163
20 VSND =1116.4 *SQRT{TR)
SIGMA=TR®¢4,2559
SIGMSR=SORT(SIGMA )
VP =VE/SIGMSR
IF(LUE.EQ.0) MACH= VP/VSND
TF(LUE.EQ.1) VCSMACH®VSND
0C=1482.5 & DELTA ¢ MACHe®#2
RETURN
END

S an

Figure 8. — FORTRAN Listing of Subroutine VUSER

SUBROUTINE USERSB

The principal purpose of subroutine USERSB is to define elements of the matrix and/or
vector. Thus CALL USERSB performs the same functions as MATRIX/REPLACE and
VECTOR/REPLACEVECTOR control cards.



SUBROUTINE USERSB (A, B, M, N, IUSE)
COMPLEX A(M, M, N)

REAL B(M, N)
where:
A is the complex matrix whose dimension are M, M, N.
B is a real matrix whose dimensions are.M x N.
M is the row and column dimension of the A matrix.

IUSE is the count of the number of times the CALL USERSB data card has been used.

A sample of a FORTRAN listing of subroutine USERSB is shown in figure 9.

SUBROUTINE USERSB(A,ByMM,N, IUSE)
COMPLEX A(MM,MM,N)

REAL B(MM,N)

REAL My 1YY yMW MWD ¢ MDE » MQsKQ
INTEGER S0,S1452,53

DATA S0sS19S2553/142+394/
NAMELIST/APDATA/M,1YY9QySoyCBARsVyCLAYCMACLADHsCMADH CMQH,CLDE,
*CLQHyCMDEyCDyGAMMAD
IF(IUSE.GT.1)GO TO 10

CALL CLEAR({B,MM*N)

10 READ{S5,APDATA)

WRITE{6+APDATA)

KQ=0.0

TQ=0.5

TL=0.1

QCMD=1.0

WGUST=0.0

6G=32.17

RAD=57.295

ZW= =Q#*S* (RAD*CLA + CD)/(VeM)
IWD= ~Q*S*CBART*CLADH/(2%M*V%¢2)
21Q= —-Q*S*CBARCLQH/(2%M*%y)
IDE= -Q#S*(RAD®CLODE)/M

MW= Q%*S*CBAR* (RAD*CMA) 7{V*1YY])
MWD= Q#S*(CBAR®®2 ) &CMADH/ (2% 1YYV *%2)
MQ= Q*S*(CBARS*2)SCMQH/{2%V*]IYY)
MDE= Q#*S*CBAR*(RAD®CMDE)/1YY
AllylyS1)=(1.0-2WD)

All1,1,S0)= -ZW

All1,92,S0)= (-Vv-1Q)

A(193+S0)= G*SIN(GAMMAO)
A(l1y4,S0)= -2DE

A(2+1951)= —-MWD

A{241,50)= —MW

Al2424S1)= 1.0

A(242450)= -MQ

A{2y4450)= -MDE

A{3492,S0)= -1.0

A(3,3,S1)= 1.0

A(444451)= 0,05

A(494950)= 1.0

Al445,50)=-KQ

A(5,5450)= 1.0

Al547,50)=-1.0

Al64924+51)=-TQ

Alb96,51)=TQ

Al6464S0)= 1.0

AlT796,50)=~1.0

A{T+7451)=TL

A{T97,S50)= 1.0

B(14S0)= —-ZWeWGUST

B{2¢S0)= —MW*WGUST

B{5,S0)= -1.0%QCMD

RETURN

Figure 9. — FORTRAN Listing of Subroutine USERB
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Subroutines MUSER, VUSER, and USERSB can call a number of subroutines from the
QR FORTRAN library.

Note: The BEGIN card and its associated data must be called before the CALL MUSER,
CALL VUSER, or CALL USERSB cards.

The user may read and write input and output files by using the standard FORTRAN
conventions, that is, logical input is unit 5 and logical output is unit 6. The logical punch
unit is 93.

Three user defined subroutines are called by MUSER, VUSER and USERSB. These
subroutines perform input data and matrix manipulation functions.

SUBROUTINE ASSIST

SUBROUTINE ASSIST is called by MUSER and reads and writes card images onto disk
unit 7 until a dollar sign followed by the NAMELIST name is encountered in column 2,
and the NAMELIST values are terminated by a dollar sign. In addition, card images read
by the QR/MUSER execution are printed as punched. The diagnostic, (THIS IS A
COMMENT CARD), may appear if data appears in column one, or an infraction of the
CDC 6600 NAMELIST capability occurs. A FORTRAN listing of subroutine ASSIST is

shown in figure 10.

SUBROUTINE ASSIST

THIS ROUTINES PURPOSE 1S TO READ NAMELIST DATA (MAKING A FEW 0B~
VIOUS CHECKS) AND PLACE ON DISK UNIT 7 (TAPE7). THUS, A USER WISH-
ING TO USE NAMELIST READ CAPABILITY FROM QR JUST NEED DECLARE HIS
NAMELIST VARIABLES AND ADD TWO EXECUTABLE STATEMENTS. FOR EXAMPLE,

SUBROUTINE MUSER(A¢MyNyIMAT)
COMPLEX A{M,MyN)
NAMELIST/NAME/VARLyVARZ2yeeeyETC.
CALL ASSIST

READ (T,NAME)

ETC.

ASSIST READS AND WRITES THE USER INPUT CARD IMAGES AS WELL AS
PLACING NAMELIST VARIABLE NAMES AND VALUES ONTO UNIT 7. UNIT 7 IS
POSITIONED AT THE BEGINING OF INFORMATION.
COMMON/IBLANK/ 1BLANK
COMMON/TELEX/TELEX
INTEGER DOLLAR,ICARD{8)
LOGICAL TELEX
DATA N1,N2yN3,)N8yNTB,NT9+sDOLLAR/L142,398,78y79,1HS$/
TEST FOR TTY, PRINT DIAGNODSTIC AND EXIT 1F ACTIVE
IF(TELEX)GO TO 100
SET DOLLAR SIGN COUNTER TO O AND REWIND UNIT 7
IDLLAR = 0
REWIND 7
READ AND WRITE DATA CARD
10 CALL RWAL1O0(ICARD,N8)
IF(KOMSTR(IBLANKyN1,N1,ICARD,N1))20, 30, 20
SOMETHING OTHER THAN BLANK IN COLUMN 1, ACCEPT AS COMMENT
20 WRITE(6,6000)
60 TO 10
ARE WE LOOKING FOR FIRST OR SECOND $ SIGN
30 IF{IDLLAR)1O, 40, 70
1ST 8 SIGN, IF WE DO NOT FIND IT, PRINT COMMENT AND CONTINUE
40 1F(KOMSTR(DOLLAR,N14N1,1CARD,N2))20, 50, 20
50 IDLLAR=NZ
MADE IT, MAKE SURE NEXT CHARACTER IS NON-BLANK, IF BLANK PRINT 210
IF(KOMSTR(IBLANKyN1 +N1,ICARDyN3))60, 20, 60
SCAN FOR SECOND $ SIGN, IDLLAR IS SET TO 2 FROM STATEMENT 230
60 IDLLAR=IDLLAR+ISCAN(ICARD,N3,NT8,DOLLARNLyN1,I)

Figure 10. — FORTRAN Listing of Subroutine ASSIST.



SUBROUTINE CLEAR, (A, N)

SUBROUTINE CLEAR zeros the first N elements of matrix A. Subroutine CLEAR is
called by MUSER and USERSB. A FORTRAN listing is shown in figure 11.

SUBROUTINE NEGMAT (A, N)

SUBROUTINE NEGMAT reverses the sign of the first N elements of matrix A. Subroutine
NEGMAT is called by VUSER. Subroutine NEGMAT is an entry point in subroutine

CLEAR (see fig. 11).

C SUBROUTINE CLEAR ZEROS THE FIRST N ELEMENTS OF MATRIX M.
SUBROUTINE CLEAR(M,N}
INTEGER M{1)
COMMON/1BLANK/IBLANK
IF(N.LE.O)GD TO 40
00 10 1I=1,N
10 M(I)=0
GO TO 40
ENTRY BLKFLL
DO 20 1I=14N
20 M{I1)=IBLANK
GO T0 40
€ SUBROUTINE NEGMAT REVERSES THE SIGN OF THE FIRST N ELEMENTS OF MATRIX M,
ENTRY NEGMAT
DO 30 I=14N
30 M{I)=-M(])
40 RETURN
END

Figure 11. — FORTRAN Listing of Subroutines CLEAR and NEGMAT.

In figure 12 two cards are used to transfer to MUSER and VUSER. These subroutine calls
will pass the starting position and matrix dimensions of the A and B matrices respectively.
The subroutine call in VUSER to USERSB must have both calling and receiving subroutine
arguments to SUBROUTINE USERSB established by the user.

QR
Main Program

MUSER VUSER

CLEAR ASSIST NEGMAT USERSB

Figure 12. — Interface with Subroutines MUSER and VUSER
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Figure 13 shows one supplied user subroutine, USERSB. The subroutine call to USERSB
establishes the starting positions and dimensions of the A and B matrices. USERSB in tumn
calls subroutine CLEAR.

QR
Main Program

USERSB

SYSTEM
CLEAR ROUTINE

Figure 13. — Interface with Subroutine USERSB
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7.0 SAMPLE PROBLEMS

7.1 EIGENVALUE CALCULATIONS

The following pages illustrate how to use the QR program to analyze the feedback control
system illustrated in figure 14.

wi—— b6 [ ev
t- s+2

- y(s)

z(s)

____[E'<__l

Figure 14. — A Simple Feedback Control System

Three simultaneous algabraic equations in three unknowns which result from figure 14 are:

x(s8) = w(s) - z(s)

- (=)
y(s) = (S+2 X(s)

z(s) = Ky(s) (60)
Dropping the functional dependence in s the three equations may be rewritten as:
X t+tz=w
(s+1)x-(s+2)y=0
Ky-z=0 (61)

The three equations may be written in the matrix form as:

1 0 1 X W
(s+1) (s +2) 0 y = 0 (62)
0 K -1 y2 0

The square polynomial matrix may be written as the sum of square matrices in power of s.

w
1 -1 0 s+ ] 1 -2 0 y,=10 63)
0 0 0 0 K -1 z 0
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To enter the square polynomial matrix as input to QR, QR requires thai the matrix be in
the form of equation (63). The following list of cards will result in an eigenvalue calculation

with K = 1.

BEGIN

AN EIGENVALUE CALCULATION
3 1

MATRIX

21110 22

21010 22

(blank card)

COMPUTE

—

oo
=

W —
[\
OO
W —
w W
O O

1-1.0
0 -2.0

To perform two more eigenvalue calculation within the same execution of QR (for values of
gain K = 20 and K = 0) the following list of cards follow the compute card:

REPLACE
320 200
(blank card)
COMPUTE
REPLACE
32000
(blank card)
COMPUTE

After processing each COMPUTE card the current version of the square polynomial matrix
resides in the computer's central memory. Therefore after the final COMPUTE is processed
the value of the 3 2 0 element of the square polynomial matrix will be O.

7.2 TIME RESPONSE CALCULATION

The following pages illustrate how to use the QR program to obtain the time response for
the block diagram in figure 15 due to (1) a unit step input and (2) unit cosine input.

+ x(s) s+ 3
w(s) ———» > Y(s)
- s+4
z(s) s+5
s+6

Figure 15, — A Sample Control System for Time Response Calculation
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Three simultaneous algebraic equations in three unknowns which result from figure 15 are:

w(s) - z(s) = x(s)

(s+3) _
x(s) Ctd) y(s)
(st5) _
y(s) GFe) z(s) (64)

These three equations may be written in matrix form as:

1 0 1 x(s) w(s)
s+3 ~(s+4) O y(is) >=< o (65)
0 (s+5) ~(s+6) z(s) o

Using Cramer's rule, the expression for y(s) is obtained by taking the ratio of two deter-
minants. The numerator determinant is the determinant of the square polynomial matrix
with the right-hand side of equation (65) substitute for the second column. The denomina-
tor determinant is the determinant of the square polynomial matrix.

The resulting expression is:

< s2+9s + 18 >
y@)=| ———— ) w(s) (66)
252+ 18s + 39

where the ratio of polynomials on the right-hand side of this equation is the closed-loop
transfer function. To obtain the time response of the output, first the Laplace transform
of the input (for example either unit step or unit cosine) must be substituted for w(s) and
then the inverse Laplace transform of the right-hand side must be obtained.

In preparing the QR - Control Card deck to obtain the time response of the output tHe
user must:

1. Define the Laplace transform of the input w(s).

[\

. After substituting the Laplace transform for w(s); algebraically manipulate the first row
of equation (65) to eliminate power of s from the denominator of each element in the
first row.

3. Define the numerator and denominator matrices whose determinants will result in the
expression in equation (66).
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The data cards required for a QR time response solution to a unit step input to figure 11
are as follows:

BEGIN
A TIME RESPONSE CALCULATION
MATRIX
2111.0
11010
32050
(blank card)
VECTOR
1010
(blank card)
COMPUTE POLES
CRAMER REPLACE
2
COMPUTE ZEROS

TIME INTERVALS
2

0.0 .01 1.0
1.0 .1 10.
INTEGRATE

1
FORM RATIO OF POLYNOMIALS
COMPUTE TIME RESPONSE

-1.0
1.0
-6.

W o~ o
W W N
oo~
[ O8]
i S
O -
iy
oo
W
N W
O -
»
oo

At the conclusion of the time response solution the matrix is restored into the computer
memory as originally described with the MATRIX statement.

To calculate the time response of the system to a unit cosine forcing function (cos 5t), the
Laplace transform of the forcing function is substituted for w(s) in equation (65). The
denominator in the vector polynomial is cleared making the matrix polynomial a second

w(s) =
52 + 25

orderiss ( 52 + 25 now appears in the first row). The data cards required for a QR time
solution of the system to the cosine forcing function are as follows

BEGIN
A TIME RESPONSE CALCULATION

3 2
MATRIX
21110 221-10 32110 331-1.0
110250 1 30250 11210 13210
21030 22040 32050 330-60



(blank card)
VECTOR

1 1-1.0
COMPUTE POLES
CRAMER REPLACE

2
COMPUTE ZEROS
TIME INTERVALS
)
0.0 .01 1.0
1.0 .1 10.0

FORM RATIO OF POLYNOMIALS
COMPUTE TIME RESPONSE

7.3 FREQUENCY RESPONSE AND POWER SPECTRAL
DENSITY CALCULATION

The following pages illustrate how to use the QR Program to compute a frequency response
function and perform a power spectral density analysis on the block diagram in figure 16.

+ + u(s) s+1
w{s)——» - y(s)
_ _ s+2
vis) 4 e
z{s) s+5 |
s+6

Figure 16. — A Sample Control System for Frequency Response Calculation

The four simultaneous algebraic equations in four unknowns which result from figure 16
are:

w(s) - z(s) -v(s) = u(s)

(s+1)

u(s) G+ =y(s)
©67)

4y(s) =v(s)

y(s) G+3) z(s)

(s +6)
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This four equations may be written in the matrix form as:

— —

1 0 1 1 u(s) w(s)
+1 ~(s+2 0 0
s+1) -(s+2) v(s) _ 0 (68)
0 4 -1 0 y(s) o
| O (s +5) 0 (s +6) | z(s) o

The control cards necessary to compute a frequency response function (from w = 0.1 to
w = 100) for equation (68) are:

BEGIN
A FREQUENCY RESPONSE CALCULATION
4 1
MATRIX
21110 221-10 42110 44 1-1.0
11010 220-20 32040 330-1.0
4 2050 4 4 0-6.0 1301.0 1401.0
21010
(blank card)
VECTOR
1 0 1.0

COMPUTE POLES
CRAMER REPLACE
2
COMPUTE ZEROS
FORM RATIO OF POLYNOMIALS
COMPUTE FREQUENCY RESPONSE

To perform a power spectral density analysis on the system represented by figure 16,
the von Karman power spectrum must be defined. The following list of cards follow the
COMPUTE FREQUENCY RESPONSE.

GUST SPECTRUM

1.0 2500. 2620. 11.0 6.0 1.0
4.78 1.79

COMPUTE PSD

This statement will calculate the PSD of the polynomial ratio formed prior to the frequency
response calculation. In addition, this polynomial ratio is multiplied by the above described
gust spectrum. At the conclusion of the frequency response solution, the matrix is restored

into the computer memory as originally described with the MATRIX statement.



7.4 ROOT LOCUS CALCULATION

The following pages illustrate how to use the QR program to perform a root locus

calculation for the block diagram in figure 17.

v+

x(s) s+3

)
wis Bs+5

z(s)

4

s+2

~
)
¥

— y(s)

Figure 17. — A Sample Control System for Root Locus Calculations

Three simultaneous algebraic equations in three unknowns which result from figure 17 are:

x(s) +z(s) = w(s)
( s+ 3 = y(s)
x(s) 73 y(s

K 4 =z(
y(s) —y = z(s)

This three-equation statement may be written in the matrix form as:

1 0 1 S x(s)
(s+3) -15s+5) 0 y(s) =
0 4K G+ 2) z 2(s)

w(s)

o

o

The control cards necessary to perform the Root Locus solution are:

BEGIN
A ROOT LOCUS CALCULATION

3 1 2
MATRIX
21110 221-50 331-10
13010 21030 220-50
33--20

(blank card)

W —

N —

S o

R -

oo
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GAINS

2 2
1.0 2.0
0.0 270.
1
320

COMPUTE ROOT LOCUS

The COMPUTE ROOT LOCUS statement will calculate the open-loop poles and zeros, the
frequency response of their ratio, and the eigenvalues for each complex gain value. The
open-loop poles and zeros that are calculated by this operation are saved in the pole and
ZETO arrays.

Eiginvalue rootings of sample problems were hand-checked and compared with other
similar program's output results. A similar procedure was followed for time response,
frequency response, and flutter calculations. All results agreed to expected round-off error.

The order of the square matrix polynomial was varied over a wide range. The minimum
number of rows input was 1, the maximum was 144. The degree ranged from O to 7. (The
program will compute the determinant of a 144 by 144 square matrix polynomial of
degree 0). )



I
7.5 QR SAMPLE PROBLEM OUTPUT

The following pages contain actual printed output from the execution of the previous
four examples.

BEGIN

7«1 EIGENVALUE CALCULATION
3 1

MATRIX

21 1l1.0

[4) 1 101.0 13 0L.0
2 101.0 [+]

3 201.0 3 3 0-1.0

COMPUTE
REPLACE
3 2 020.0

COMPUTE
REPLACE
3 2 00.0

COMPUTE
BEG IN

T.2 TIME RESPONSE CALCULATION

3 1

MATRIX
2111.0 221
1111.0 131
3 205.0 330

0 3 2 11.0 3
] 21 03.0 2
-0

VECTOR
1 01.0

COMPUTE POLES
CRAMER REPLACE
2
COMPUTE ZEROS
TIME INTERVALS
2
0.0 .01 1.0
1.0 (3 10.0
FORM RATIO OF POLYNOMIALS
COMPUTE TIME RESPONSE
BEGIN
7.2 TIME RESPONSE CALCULATION
3 2
MATRIX
21 11.0 22
1 1025.0 1 3 02
2 1 03.0 2 2

-0 32 11.0 33
-0 L 121.0 L3 21.0
-0 3 2 05.0 33

VECTOR
1 11.0

COMPUTE POLES
CRAMER REPLACE
2

COMPUTE ZEROS
TIME INTERVALS

2
0.0 .01 1.0
1.0 ol 10.0
FORM RATIO OF POLYNOMIALS

135
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COMPUTE TIME RESPONSE
BEGIN

7.3 FREQUENCY RESPONSE AND POWER SPECTRAL DENSITY CALCULATION

4 1
MATRIX
21 11.0 221-1.0
1 101.0 2 2 0-2.0
4 2 05.0 4 4 0-6.0
2101.0

2 11.0
2 04.0
3 01.0

-

VECTOR
1 01.0

COMPUTE POLES
CRAMER REPLACE
2
COMPUTE ZEROS
FORM RATIO OF POLYNOMIALS
FREQUENCY RESPONSE
1 1
COMPUTE FREQUENCY RESPONSE
GUST SPECTRUM

6ol 2500.0 2620.0 11.0 6.0

4.78 1.79
PLOT PSD
1 o 1
0. 5.0
COMPUTE PSD
BEGIN
7.4 ROOT LOCUS CALCULATION
3 1
MATRIX
21 11.0 2
1 3 01.0 2
3 3 0-2.0

GAINS
2 2
1.0 2.0
0.0 270.0
1
320
COMPUTE ROOT LOCUS
sSToP
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BEGIN
7.1 EIGENVALUE CALCULATION
3 1 -0 -0 -0
MATRIX
2 1 1
2 1 0

1.0000000E +00
1.0000000E +00

THE INPUT MATRIX IS REAL
Sxx 0 MATRIX
ROW 1

ROW 2
ROW 3

1.0000E+00 - E+00
1.0000E+00 ~2.0000E+00
«E+00
S%% 1 MATRIX

ROMW 1 IS ZERO.

2
2

2 1 -1.0000000E+00
2 0 -2.0000000E +00
1.0000E+00

«E+00

1.0000E+00 -1.0000E+00

ROMW 2 1.0000E+00 -1.0000E+00 «E+00
ROW 3 IS ZERO.
COMPUTE
LEADING COEFFICIENT = 2.0000000E+00 «E+00 ce
REAL IMAGINARY ZETA OMEGA
REPLACE
3 2 0 2.,0000000E+01 -0 -0 -0 -.E+00
COMPUTE
LEADING COEFFICIENT = 2.1000000E+01 «E+00 ce
REAL IMAGINARY LETA OME GA
REPLACE
3 2 0 «E+00 -0 -0 -0 -.E+00
COMPUTE
LEADING COEFFICIENT = 1.0000000E+00 «E+00 ce
REAL IMAGINARY ZETA OMEGA
BEGIN
7.2 TIME RESPONSE CALCULATION
3 1 -0 -0 -0
MATRIX
2 1 1 1.0000000E+00 2 2 1 -1.0000000E+00
1 11 1.0000000E +00 I 31 1.0000000E +00
3 2 0 5 +0000000E+00 3 3 0 <-6.0000000E+00
THE INPUT MATRIX IS REAL
S*x 0 MATRIX
ROW 1 IS ZERC.
ROW 2 3.0000E+00 —4.0000E+00 =-E+00
ROW 3 +E+00 5.0000E+00 ~6.0000E+00
S*% 1 MATRIX
ROW 1 1.0000€E+00 «E+00 1.0000E+00
ROW 2 1.0000E+00 -1.0000E+00 +E+00
ROW 3 -E+00 1.0000E +00 ~1.0000E+00

1
3

0.
cPs
-0

0.
cPs

-0

0.
CPS

3
2
-0

1 0
2 0

199 SEC.
1
-0 -0
209 SEC.
1
-0 -0
220 SEC.

1

2 1
1 0
-0 -0

1.0000000£+00
1.0000000E+00

ROOTING SEC.
REAL
~1.50

-.E+00

ROOTING SEC.
REAL
-1.05

-+E+00

ROOTING SEC.
REAL
-2.00

1.0000000E+00
3.0000000€ +00
~<.E+00

w W
(=X -]

0,002
IMAGINARY
«0

-0 -0 -0
0.003
IMAGINARY
.0
-0 -0 -0
0.002

IMAG INARY
«0

dnow
dor

3
2
-0

1.0000000E+00
-1.0000000€E+00
ZETA OMEGA
1.000 1.50
=.E+00
ZETA OMEGA
1.000 1.05
~+E+00
LETA OMEGA
1.000 2.00
=1.0000000E+00
~4 .0000000E +00
~-eE+00

q

i

CPS
0.239

CPS
0.167

CPS
0.318
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VECTOR
1 0 1.0000000E+00 -0 -0 -+.E+00 -0 -0 ~.E+00 -0 -0 ~.E+00
-0 -0 ~.E+00 -0 -0 -.E+00 -0 -0 -.E+00 -0 -0 -.E+00
COMPUTE POLES
LEADING COEFFICIENT = 2.0000000E +00 +E+00 ce 0.251 SEC. ROCTING SEC. = 0.004
REAL IMAGINARY 1ETA OMEGA cPs REAL IMAGINARY ZETA OMEGA ces
1 -5.37 -0 1.000 5.37 0.854 2 ~-3.63 .0 1.000 3.63 0.578
3 .0 .0 =000 <0 -0
CRAMER REPLACE
2 -0
COMPUTE ZEROS
LEADING COEFFICIENT = 1.0000000E+00 «E+Q0 cep 0.257 SEC. ROOTING SEC. = 0.001
REAL IMAGINARY LETA OMEGA CPS REAL IMAG INARY ZETA OMEGA CPS
1 -6.00 «0 1.000 6.00 0.955 2 -3.00 -0 1.000 3.00 0.477
TIME INTERVALS
2
-E+00 1.00000E-02 1.00000E+00

1.00000E +00 1.00000E-01 1.00000E+01
FORM RATIO OF POLYNOMIALS
P R T R A T R R P LR e RS T LS
CANCELLED POLES CANCELLED ZEROS

B T Ry L Ty Ly T e LTy s e eI IR S L )]
REMAINING ZEROS AFTER CANCELLATION

REAL IMAGINARY ZETA OMEGA CPS REAL IMAGINARY ZETA OMEGA CPS
1 -6.00 «0 1.000 6.00 0.955 2 -3.00 -0 1.000 3.00 0.477
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS DRDER = 2
5.,00000E-01 4.50000E+00 9.00000E+00
T T g T D T e T o T T L X o T L L s S R S S
REMAINING POLES AFTER CANCELLATION

REAL IMAGINARY 2ETA OMEGA cPs REAL IMAGINARY ZETA OMEGA cPs
1 -5.37 =0 1.000 5.37 0.854 2 -3.63 -0 1.000 3.63 0.578

3 «0 -0 .000 -0 «0
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 3

1.00000E+400 9.00000E+00 1.95000E+01 +«E+00

L2 d R A2 e R A Al el Rl it A R A R e R A R L R R R LA R R L R L L S R e R e P R e R S R T TS R SRS RS T SR PR Y P S 222 S T2 22222 22 22 2 2 )
COMPUTE TIME RESPONSE

POLES RESIDUES * LEROS -

REAL IMAGINARY MAGNITUDE ZETA CcPS REAL IMAGINARY MAGNITUDE ANGLE ®© REAL IMAGINARY MAGNITUDE ZETA CPS’
=5.37E+00 -E+00 5.37TE+00 1.000 8.54E-01 -8.07€-02 «E+00 8.0TE-02 180.0 * -6,.00E+00 «E+00 6.00E+00 1.000 9.55E-01
-3.63E+00 «E+00 3.63E+00 1.000 5.78E-01 1.19€E-01 -E+00 1.19E-01 «0 ® -3,00€E+00 «E+00 3.00E+00 1.000 4.77E-01

~«E+00 ~+.E+00 «E+00 «000 LE+00 4.62E-01 +E+00 4.62E-01 0 *
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TIME

2.0000E-02
7.0000E-~02

0.1200
0.1700
0.2200
0.2700
0.3200
0.3700
0.4200
0.4700
0.5200
0.5700
0.6200
0.6700
0.7200
0.7700
0.8200
0.8700
0.9200
0.9700
1.200
1.700
2.200
2.700
3.200
3.700
4.200
4.700
5.200
5.700
6.200
6.700
7.200
7.700
8.200
8.700
9.200
9.700

~1.0000000€E+00 3
2.5000000€E+01 1
~4+0000000E+00 3

TINE RESPONSE TIME RESPONSE
«0 0,5000 1.0000E-02 0.5000
5.0000E~02 0,4992 6.0000E~-02 0.4989
0. 1000 0.4972 0.1100 0.4967
0.1500 0.4945 0.1600 0.4940
0.2000 0.4916 0.2100 0.4909
0.2500 0.4885 0.2600 0.4879
0.3000 0.4855 0.3100 0.4849
0.3500 0.4826 0.3600 0.4821
0.4000 0.4800 0.4100 0.4795
0.4500 0.4775 0.4600 0.47T1
0.5000 0.4754 0.5100 0.4750
0.5500 0.4735 0.5600 0.4731
0.6000 0.4718 0.6100 0.4715
0.6500 0.4703 0.6600 0.47T00
0.7000 0.4690 0.7100 0.4688
0.7500 0.4679 0.7600 0.4677
0.8000 0.4669 0.8100 0. 4668
0.8500 0.4661 0.8600 0.4660
0. 9000 0.4654 0.9100 0.4653
0.9500 0.4648 0.9600 0.4647
1.000 0.4643 1.100 0.4635
1.500 0.4620 1.600 0.4619
2.000 0.4616 2.100 0.4616
2.500 0.4616 2.600 0.4615
3.000 0.4615 3.100 0.4615
3.500 0.4615 3.600 0.4615
4.000 0.4615 4.100 0.4615
4.500 0.4615 4.600 0.4615
5.000 0.4615 5.100 0. 4615
5.500 0.4615 5.600 0.4615
6.000 0.4615 6.100 0.4615
6.500 0.4615 6.600 0.4615
T7.000 0.4615 T7.100 0.4615
T.500 0.4615 7.600 0.4615
8.000 0.4615 8.100 0.4615
8.500 0.4615 8.600 0.4615
9.000 0.4615 9.100 0.4615
9.500 0.4615 9.600 0.4615
10.00 0.4615
BEGIN
T«2 TIME RESPONSE CALCULATION
3 2 -0 -0 -0
MATRIX
2 1 1 1.0000000E+00 2 2 1
110 2.5000000E+01 1 3 0
21 0 3.0000000E+00 2 2 0
THE INPUT MATRIX IS REAL
S&x 0 MATRIX
ROW 1 2.5000E+01 -E+00 2.5000E+01
ROW 2 3.0000€+00 -4.0000€+00 -E+00

ROW 3 «E+00

Se% 1 MATRIX

5.0000E+00 ~6.0000E+00

2 1
1 2
2 0

RESPONSE TIME
0.4999 3.0000E-02
0.4985 8.0000E-02
0.4962 0.1300
0.4934 0.1800
0.4903 0.2300
0.4873 0.2800
0.4843 0.3300
0.4815 0.3800
0.4790 0.4300
0.4767 0.4800
0.4746 0.5300
0.4728 0.5800
0.4712 0.6300
0.4698 0.6800
0.4686 0.7300
04675 0.7800
0.4666 0.8300
0.4658 0.8800
0.4652 0.9300
0.4646 0.9800
0.4629 1.300
0.4618 1.800
0.4616 2.300
0.4615 2.800
0.4615 3.300
0.4615 3.800
0. 4615 4.300
0.4615 4.800
0.4615 5.300
0.4615 5.800
0.4615 6.300
0.4615 6.800
0.4615 7.300
0.4615 7.800
0.4615 8.300
0.4615 8.800
0.4615 9.300
0.4615 9.800
1.0000000€+00 3
1.0000000E+00 1
5.0000000E+00 3

RESPONSE TIME
0.4997 4.0000€-02
0.4981 9.0000E-02
0.4957 0. 1400
0.4928 0.1900
0.4897 0.2400
0.4867 0.2900
0.4837 0.3400
0.4810 0.3900
0.4785 0.4400
0.4762 0.4900
04742 0.5400
0.4724 0.5900
0.4709 06400
0.4695 0.6900
0.4683 0.7400
0.4673 0.7900
0.46064 0.8400
0.4657 0.8900
0.4650 0. 9400
0 .4645 0.9900
0.4625 1.400
0.4617 1.900
0 4616 2 .400
0,4615 2.900
00,4615 3.400
0.4615 3.900
0.4615 4.400
0.,4615 44900
044615 5.400
0.4615 5.900
0.4615 6.400
0.4615 6.900
0.4615 T.400
0.4615 T.900
0.4615 8.400
0.4615 8.900
0.4615 9.400
0.4615 9.900
3 1 =-1.0000000E+00
3 2 1.0000000E +00
3 0 ~65.0000000E+00

RESPONSE

0.4995
0.4977
0.4951
0.4922
0.4891
0s4861
0.4832
0.4805
0.4780
0.4758
0.4738
0.4721
0.4706
0.4693
0.4681
0:4671
0u%663
04656
0.4649
o.%“
0.4622
0.4617
0.4616
0.4615
0.4615
0.4615
0.4615
0.4615
0.4615
0.4615
0.4615
0.4615
0.4615
0.4615
04615
0.4615
0.4615
0.4615
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TIME RESPONSE TIME RESPONSE TIME
-0 0.5000 1.0000E-02 0.4993 2.0000E-02
5.0000E-02 0.4837 6.,0000E-02 0.4765 7.0000E-02
0.1000 0.4361 0.1100 0.4231 0.1200
0.1500 0.3607 0.1600 0.3427 0.1700
0.2000 0.2626 0.2100 0.2407 0.2200
0.2500 0.1480 0.2600 0.1238 0.2700
0.3000 2.4340E-02 0.3100 -8.1219€-04 0.3200
0.3500 -0.1007 0.3600 -0.1252 0.3700
0.4000 -0.2193 0.4100 -0.2415 0.4200
0.4500 -0.3240 0.4600 ~0.3426 0.4700
0.5000 ~0.4083 0.5100 =0.4222 0.5200
0.5500 -0.4670 0.5600 =0.4753 0.5700
0.6000 ~0.49064 0.6100 —0.4986 0.6200
0.6500 ~0.4947 0.6600 -0.4906 0.6700
0.7000 =0.4621 0.7100 ~0.4520 0.7200
0.7500 -0.4006 0.7600 -0.3852 0.7700
0.8000 ~0.3140 0.8100 =0.2942 0.8200
0.8500 ~0.2078 0.8600 -0.1848 0.8700
0.9000 -B.B549E-02 0.9100 ~6.3776E-02 0.9200
0.9500 3.632TE-02 0.9600 641291E-02 0.9700
1.000 0.1590 1.100 0.3680 1.200
1.500 0.1588 1.600 -8.9174E-02 1.700
2.000 -0.4123 2.100 =0.2243 2. 200
2.500 0.5020 2.600 0.4486 2.700
3.000 -0.3920 3.100 -0.4946 3.200
3.500 0.1262 3.600 0.3438 3.700
4.000 0.1899 4.100 ~5.6311€E-02 4.200
4 «500 -0.4304 44600 ~0.2536 4. 700
5.000 0.4998 5.100 0.4626 5.200
5.500 =0.3704 5,600 ~0.4877 5.700
6.000 93660E-02 6.100 0.3188 6,200
6.500 0.2203 6.600 ~2.3085E-02 6.700
7.000 ~0.4466 7.100 -0.2818 7.200
7.500 0.4953 T.600 0.4746 7.700
8.000 -0.3470 8.100 -0.4786 8.200
8.500 640726E-02 8.600 0.2923 8.700
9.000 042497 9.100 1.0243E~02 9.200
9.500 ~0.4609 9.600 -0.3087 9.700
10.00 0.4887
BEGIN
T.3 FREQUENCY RESPONSE AND POWER SPECTRAL DENSITY CALCULATION
4 1 -0 -0 -0
MATRIX
2 1 1 1.0000000E+00 2 2 1 =1.0000000E+00 4 2
1 10 1.0000000E+00 2 2 0 ~2.0000000E+00 3 2
4 2 0 5.0000000E+00 4 4 @ ~6.0000000€+00 1 3
2 1 0 1.0000000E +00 -0 -0 -0 ~-E+00 -0 -0
THE INPUT MATRIX IS REAL
S%% 0 MATRIX
ROW 1 1.0000E+00 <E+00 1.0000€+00 1.0000E+00
ROW 2 1.0000E+00 ~2.0000E+00 -E+Q0 «E+00
ROW 3 «E+00 4.0000E+00 -1.0000E+00 +E+00
ROW 4 +E+00 5.0000E+00 «E+00 ~6.0000E +00

[-R-N-N

RESPONSE TIME
0.4974 3.0000E-02
0.4682 8.0000E-02
0.4090 0.1300
0.3238 0.1800
0.2183 0.2300
9.9216E-02 0.2800
-2.5955E-02 0.3300
~0.1493 0.3800
-0.2632 0.4300
-0.3605 0.43800
-0.4351 0.5300
-0.4824 0.5800
~0.4995 0.6300
-0.4853 0.6800
~0.4408 0.7300
-0.3687 0.7800
-0.2736 0.8300
-0.1613 0.8800
~3.8839E-02 0.9300
8.6106E-02 0.9800
0.4871 1.300
-0.3152 1.800
1.8656E-02 2.300
0.2855 2.800
~0. 4760 3.300
0.4773 3.800
~0.2887 4,300
-1.4687€-02 4,800
0.3122 5.300
-0.4856 5.800
0.4658 6.300
-0.2608 6.800
—-4.7952E-02 7.300
0.3376 7.800
-0.4930 8.300
0.4524 8.800
-0.2318 9.300
-8.1006E-02 9.800
1.0000000E+00 4
4.,0000000E+00 3
1.0000000E+00 1
-.E+00 -0

RESPONSE TIME
D.4941 4+0000E-02
0.4587 9.0000E-02
0.+3939 0.1400
0.3042 0.1900
0.1954 0.2400
T.4417E-02 0.2900
~5.1026E-02 0.3400
~0.1731 0.3900
-0 .2842 0.4400
~0.3774 0.4900
~0.4468 0.5400
~0.4883 0.5900
~0.4991 0. 6400
~0.4788 0.6900
~0.4285 0. 7400
~0.3514 0.7900
~0.2523 0.8400
~0.1374 0.8900
~1.3801£~-02 0.9400
0.1107 0.9900
0.4870 1.400
—0,4641 1.900
0.2570 2,400
5.237TE~-02 2.900
-0.3409 3.400
0.4939 3.900
-0 4504 4.400
0.2278 4.900
8.5391E~-02 5.400
~0.3646 54,900
0.4989 6.400
-0 .4347 6.900
0.1976 T.400
0.1180 T.900
-0 .3867 8 . 400
0.5016 8.900
~0.4170 9.400
0.1666 9.900
4 1 -1 .0000000E+00
3 0 -1.0000000E400
4 0 1 .0000000E+00
-0 ~0 ~+E+00

RESPONSE

0.4895
0.4479
0.3778
0.2837
0.1719
4.9437E-02
~7.5961€E-02
-0.1964
~0.3045
-0.3933
-0.4575
-0.4929
-0.4976
-0.4710
-0.4151
-0.3331
-0.2303
-0.1131
1.1275E~02
041350
0.3679
-0.4993
0.4324
-0.1935
-0.1223
0.3896
~0.5018
0.4145
~0.1624
~0. 1544
0.4097
~0.5021
0.3948
-0.1305
~0.1857
0.4281
~0.5002
0.3733
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S®x 1 MATRIX

ROW 1 IS Z€ERO.

ROW 2 1.0000£ +00 -1.0000E +00 -E+00 «E+00
ROW 3 IS ZERO.
ROW 4 -E+00 1.0000€+00 «E+00 -1.0000E+00
VECTOR
1 0o 1.0000000E+00 -0 -0 —-.E+00 -0 -0 ~.E+00 -0 -0 -.E+00
-0 =0 -.E+00 -0 -0 -+E+00 -0 -0 -.E+00 -0 -0 -.E+00
COMPUTE POLES
LEADING COEFFICIENT = -6.0000000E+00 «E+00 ce 0.589 SEC. ROOTING SEC. = 0.005
REAL IMAGINARY ZETA OMEGA cPs REAL IMAGINARY ZETA OMEGA cPs
1 ~5.83 -0 1.000 5.83 0.927 2 -1.17 0 1.000 1.17 0.187
CRAMER REPLACE
2 -0
COMPUTE ZEROS .
LEADING COEFFICIENT = ~1.0000000E+00 «E+00 ce 0.597 SEC. ROOTING SEC. = 0.002
REAL IMAGINARY 1ETA OMEGA ces REAL IMAGINARY ZETA OMEGA CPS
1 -6.00 -0 1.000 6.00 0.955 2 -1.00 «0 1.000 1.00 0.159

FORM RATIO OF POLYNOMIALS
O T T L L o R Yy e )

CANCELLED POLES CANCELLED ZERDS

L T T R L L TR TR WA SRR RTINS
REMAINING ZEROS AFTER CANCELLATION

REAL IMAGINARY 2ETA OMEGA CPS REAL IMAGINARY ZETA OMEGA CcPS
1 ~6.00 «0 1.000 6.00 0.955 2 -1.00 «0 1.000 1.00 0.159
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 2
1.6666TE-01 1.16667E+00 1.00000E+00
2 S T S T L S R T A T LYo

REMAINING POLES AFTER CANCELLATION

REAL IMAGINARY ZETA OMEGA CPS REAL IMAGINARY ZETA OMEGA CPs
1 -5.83 «0 1.000 5.83 0.927 2 -1.17 «0 1.000 1.17 0.187
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 2
1.00000E+00 7.00000E+00 6.83333E+00
B TR B R R Y R e R
FREQUENCY RESPONSE
1 1
COMPUTE FREQUENCY RESPONSE
MEAN SQUARE VALUE = 7.8B0E+02y RMS = 2,807E+01
CHARACTERISTIC FREQUENCY = B8.296E+03 CPS (5.212E+04 RADIAN/SECOND)
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ROW 1 IS ZERO.
ROW 2 1.0000E+00 -1.0000E +00 «E+00
ROW 3 «E+00 1.0000€+00 -1.0000E+00

S** 2 MATRIX
ROW 1 1.0000E+00 -E+00 1.0000€E+00

ROW 2 IS ZERO.
ROW 3 1S ZERO.

VECTOR
1 1 1.0000000E+00 -0 -0 -.E+00 -0 -0 -«.E+00 -0 -0 —«E+00
-0 -0 ~.E+00 -0 -0 —.E+00 -0 -0 ~+E+00 -0 -0 -.E+00
COMPUTE POLES
LEADING COEFFICIENT = 2.0000000€+00 «E+00 ce 0.411 SEC. ROOTING SEC. = 0.004
REAL IMAGINARY LETA OMEGA () REAL IMAGINARY ZETA OMEGA CcPS
1 -5.37 <0 1.000 5.37 0.854 3 .0 5.00 -.000 5.00 0.796
2 -0 -5.00 ~<000 5.00 0.796 4 -3.63 -0 1.000 3.63 0.578
CRAMER REPLACE
2 -0
COMPUTE ZEROS
LEADING COEFFICIENT = 1,0000000E+00 -E+00 ce 0.419 SEC. ROOTING SEC. = 0.002
REAL IMAGINARY ZETA OMEGA cPs REAL IMAGINARY ZETA OMEGA CPS
1 -6.00 -0 1.000 6,00 0.955 2 -3.00 -0 1.000 3.00 0.477
3 .0 -0 -000 -0 -0
TIME INTERVALS
2
«E+00 1.00000E -02 1.00000E+00

1.00000E+00 1. 00000E-01 1.00000E+01
FORM RATIO OF POLYNOMIALS
N R T T Ty R R L 2 ST e S ST
CANCELLED POLES CANCELLED ZERGCS

B Ty N T L R Ty R L e R R R R e e R e ey L e R L
REMAINING ZERDS AFTER CANCELLATION

REAL IMAGINARY ZETA OMEGA CcPS REAL IMAGINARY ZETA OMEGA CcPS
i -6.00 «0 1.000 6.00 0.955 2 -3.00 «0 1.000 3.00 0.477
3 «0 -0 000 -0 -0

POLYNOMIAL COEFFICIENTS,y FIRST COEFFICIENTS ORDER = 3

5.00000E-01 4.50000E+400 9.00000E+00 +E+00
X R R S T eI e e e ey
REMAINING POLES AFTER CANCELLATION

REAL IMAG INARY ZETA OMEGA cPs REAL IMAGINARY ZETA OMEGA CcPS
1 -5.37 -0 1.000 5.37 0.854 3 «0 5.00 -.000 5.00 0.796
2 0 ~5.00 ~.000 5.00 0.796 4 =3.63 -0 1.000 3.63 0. 578

POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORGER = &

1.00000E+00 9.00000E400 4.45000€+01 2.25000E+02 4.87500E+02
T e ]
COMPUTE TIME RESPONSE

POLES RESIDUES * ZEROS

REAL IMAGINARY MAGNITUDE ZETA cPs REAL IMAGINARY MAGNITUDE ANGLE e REAL IMAGINARY MAGNITUDE ZETA CPs
-5.37€+00 +E+00 5.37E400 1.000 8.54E-01 ~44,32E-02 +E+00 4.32E-02 180.0 * -6.00E+00 +E+00 6.00E400 1.000 9.55E-01
=3.63E+00 <E+00 3.,63E+00 1.000 5,78E-01 4.12E-02 «E+0Q0 4.12E-02 +0 * -3,00E+00 -E+00 3.00E+00 1.000 4.77E-01

«E+00 -5.00E+400 5.00E+00 -.000 7.96E-01 2.51E-01 -8.21E-03 2.51E-01 ~l.9 ¥ +E+00 «E+00 -E+00 «000 .E+Q0

«E+00 5.00E+00 5.00E+00 -.000 7.96E-01 2.51E-01 8.21E-03 2.51€E-01 1.9 ¢



el

FREQUENCY AMPLITUDE DB  PHASE FREQUENCY AMPLITUDE DB PHASE FREQUENCY AMPLITUDE DB PHASE

{RAD/SEC) (CPS) RATIO {DEG) {RAD/SEC) (CPS) RATIO {DEG) {RAD/SEC) (CPS) RATIO (DEG)

«E+00 +«E+00 1.46E-01 ~16.7 «0 ® 3,10E~01 4.93E-02 1.48BE-01 -16.6 2.3 ® 2,04E+02 3.,24E+01l 1.67E-01 -15.¢6 0.0
1.00E-03 1.59E-04 1.46E-01 -16.7 0.0 ® 4,65E~01 7T.40E~02 1.50E-01 -16.5 3.2 ® 3.05E+02 4.86E+401 1.67E-01 -15.6 0.0
1.06E-03 1.69E-04 1.46E-01 ~16.7 0.0 ® 6.97E~01 1.11E-01 1.53E-01 -16.3 4e0 * 4.58E+02 T.29E+01 1.67E-01 ~15.6 0.0
1.59E~03 2.53E-04 1.46E-01 ~16.7 0.0 ® 1.,05E+00 1.66E-01 1.586-01 -16.0 4.3 ® 6.8TE+02 1.09E402 1.67E-01 -15.6 0.0
2.39E-03 3.80E-04 1.46E-01 -~16.7 0.0 ® 1.57E+00 2.50E-01 1.63E-01 -15.8 3.8 * 1.03E+03 1.64E+02 1.67E-01 -15.6 0.0
3.58E-03 5.70E-04 1.46E-01 -16.7 0.0 ® 2.35E+00 3.74E-01 1.66E-01 -15.6 2.9 ® 1.556+03 2,46E+02 1.6TE-0Ll -15.6 0.0
5.3T€E-03 B.556-04 1.46E~01 -16.7 0.0 ® 3.53E+00 5.62E-01 1.68E-01 -15.5 1.8 ® 2.32€6+03 3.69E402 1.67€~01 -15.6 0.0
8.06E-03 1.28E-03 1.46E-01 ~16.7 0.1 ® 5.29E+00 8.43E-01 1.68E-01 -15.5 1.0 ® 3,48E+03 5.53E402 1.6TE-01 -15.6 0.0
121E-02 1.92E-03 1.46E-01 ~16.7 0.1 ® 7.94E+00 1.26£E+400 1.68E-01 -15,5 0.4 ® 5.,22E+403 8.30E+02 1.67E-01 -15.6 0.0
1.81E-02 2.89E-03 1.46E-01 ~16.7 0.1 ® 1.19E+01 1.90E+400 1.67€-01 -15.5 0.2 ® 7.82E+03 1.25E+03 1.67E-01 -15.6 0.0
2.72E-02 4,33E-03 1.46E-01 ~16.7 0.2 ® 1.79E+01 2.84E+400 1.67E-01 -15.5 0.1 ® 1.,17€+04 1.87E+03 1.67E-01 -15.6 0.0
4.08E-02 6.49E-03 1.46E-01 ~16.7 0.3 ® 2.6BE+01 4.27E+00 1.67E-01 -15.6 0.0 ® 1,76E+04 2.80E+03 1.6TE~01 -15.6 0.0
6.12E-02 9.T4E-03 1.46E-01 ~16.7 0.5 * 4.02E+01 6.40E+400 1.67E~01 ~15.6 0.0 ® 2.64E+04 4.20E+03 1.67E-01 -15.6 0.0
9.18E-02 1.46E~02 1.47E-01 ~16.7 0.7 ® 6.03E+01 9.60E+00 1.67E-01 -15.6 0.0 & 3,96E+04 6.30E+4+03 1.6TE-01 -15.6 0.0
1.38E-01 2.19E~02 1.47E-01 ~16.7 1.1 ® 9.04E+01 1.44E+01 1.,67E-01 -15.6 0.0 ® 5.94E+04 9.46E+03 1.6T7E-01 -15.6 0.0
2.07E-0} 3.29€~02 1.47E-01 ~16.6 1.6 * 1.36E+02 2.16E+01 1.67€-01 -15.6 0.0 * B.91E+04 1.42E+04 1.6TE-OL -15.6 0.0

«% % MIN VALUES * %= * % x MAX VALUES = %=
OMEGA cPsS AMPLITUDE D8 PHASE OME GA CPS AMPLITUDE DB PHASE
5.66E+00 9.01E-01 1.68E-01 -15.5 0.8 CW

GUST SPECTRUM
6.40000E +00 2.50000E+03 6+.20000E+02 1.10000€+01 6.00000E+00 1.00000E+00
4.78000E+00 1.79000€+00
PLOT PSD
1 -0 (L 1
+E+00 5.00000E +00
COMPUTE PSD
MEAN SQUARE VALUE = 9.916E-01y RMS = 9.958£-01
CHARACTERISTIC FREQUENCY = 1.057E+02 CPS (6.642E+02 RADIAN/SECOND)
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FREQUENCY PSD
(RAD/SEC) (CPS)
+E+00 «E+00 T.0TE+

1.85E—04 2.95E-05 7.07E+
2.4TE-04 3.93E-05 T.07E+
3.70E-04 5.89E-05 7T.07E+
5.55E-04 B.83E-05 T.07E+
8.33E-04 1.33E-04 7.07E+
1.25E-03 1.99E-04 7.07E+

1.B7E-03 2.98E-04 T.07E+00

2.81E-03 4.47E-04 T.0BE+
4,226-03 6.T1E-04 T.08E+

6¢32E-03 1.01E~-03 7T.08E+00
9.48E-03 1.51E-03 T.09E+00
1.,42€6-02 2.206E-03 7.11E+00

2.13E-02 3.40E-03 7T.15E+
3.20E-02 5.09E-03 7T.24E+
4.80E-02 T.64E-03 T.4lE+
T20E~-02 1.15E-02 7.68E+

1.08E~01 1.72E-02 7.92E+00

o]

00
00
00
00
00
00
00

00
00

00
00
00
00

VOO DODODDODRTDDODDEODDEOO

THE NUMBER OF POINTS OUTSIDE THE PLOT = 27

%% MIN

OMEGA CcPS

BEGIN
7.4 ROOT LOCUS CALCULATION
3 1 -0 -0 -0
MATRIX
2 1 1 1.0000000E+00
1 3 0 1.0000000E+00
3 3 0 -2.0000000€+00

THE INPUT MATRIX IS REAL
S*%x 0 MATRIX

ROW 1 1.0000E+00 «E+
ROW 2 3.0000E+00 -5.00
ROW 3 «E+00 4.00
S*%x 1 MATRIX

ROW 1 IS ZERO.

ROW 2 1. 0000E+00 -5.00
ROW 3 «E+00 «E+
GAINS
2 2
1 .00000€E +00 2.00000
«E+00 2.70000
1
320

COMPUTE ROOT LOCUS

VAt

AMPLITU

omn N

00
00E +00
QOE +00

00E +00

00

E+00
E+02

B PERCENT FREQUENCY PSD DB PERCENT FREQUENCY PSD
UF MS (RAD/SEC) (CPS) OF MS (RAD/SEC) (CPS)
5 «0 * 1.62E-01 2.,58E-02 7.65E+00 8.8 19.7 ® 4.83E+01 7.68E+00 2.31E-03
5 0.0 * 2.43E-01 3.87E-02 6.42E+00 8.1 28.9 * 6.36E+01 1.0lE+01l 1.46E-03
5 0.0 ® 3.65E-01 5.80E~02 4.55E+00 6.6 39.5 % 9.54E+01 1.52E+01 7T.41E-04
5 0.0 * 5.,47E-01 B8.70E-02 2.84E+00 4.5 50.3 % 1.43E402 2.28E+401 3.77E-04
5 0.1 ® B8.14E-01 1.30E-01 1.67E+00 2.2 60.0 * 2.15E402 3.42E+01 1.92E-04
5 0.1 ® 1.16E+00 1.85E-01 1.01E+00 0.1 67.4 ® 3,22E+402 5.13€E+01 9.76E-05
5 0.1 * 1.6LE+00 2.57E-01 6.24E-01 =-2.0 73.4 ® 4.83E+02 7.69E+01 4.97E-05
5 0.2 * 2.21E+00 3.52E-01 3.85E-01 =~4.1 78.3 * 7.25E+402 1.15€E+02 2.53E-05
5 0.3 ® 3,00E+00 4.77€-01 2.38E-01 -6.,2 82.2 * 1.09E+03 1.73E+402 1.29E-05
5 0.5 * 4.01E+00 6.39E-01 1.48€E-01 -8.3 B85.3 ® 1.63E+03 2.59E+02 6.54E-06
5 0.7 * 5.33E400 B.48E-01 9.24E-02 -10.3 B87.9 * 2.45E+03 3.89E+02 3.33E-06
5 lel ® 7.04E+00 1.12E+00 5.80E-02 -12.4 89.9 * 3.67E+03 5.84E+02 1.69E-06
5 1.6 ® 9.2B8E+00 1,48E+00 3.65E-02 -l4.4 9l.6 * 5.50E+03 B.76E+02 B8.61E-07
5 2.4 % 1,22E+01 1.94E+00 2.30E-02 -16.4 93.0 & B.25E+403 1.31E+03 4.38E-07
[ 3,7 *# 1.61E+01 2.56E+00 1.45E-02 —~1B.4 94.2 * 1.24E+404 1.97TE+03 2,23E-07
T 5.5 * 2,11E+01 3.,36E+00 9.18E~03 ~20.4 95.2 * 1.86E+04 2.96E+03 1.13E-07
9 8.5 * 2,78E+0l 4,43E+00 5.79E-03 -22.4 96.0 * 2.79E+04 4.43E+03 5.7T7E-08
0 13.0 * 3.66E+01 5.83E+00 3.66E-03 -24.4 96.6 ® 4.1B8E+04 6.65E403 2,94E-08
6.27E+04 9.,97E+03 1.49E-08
UES ** x * &k x MAX VALUES = ==
OE o] PHASE OMEGA cPS AMPLITUDE o8 PHASE
l.16E-01 1.84E-02 T.92E+00 9.0 0.9 CCW
2 1 -5.0000000E+00 3 3 1 -1.0000000E+00 1 1 0 1.0000000E+00
1 0 3.0000000E+00 2 2 O -5.0000000E+00 3 2 0 4 .0000000E +00
-0 -0 —«E+00 -0 -0 -0 —.E+00 -0 -0 -0 ~«E+00
1.0000E+00
+E+00
-2.0000E+00
-E+00
-1.0000E+00

DB

=264
-28.4
-31.3
-34.2
-37.2
=40.1
=43.0
~46.0
-48.9
=51.8
=54.8
=57.7
-60.6
=63.6
~66.5
-69.5
~T2.4
=75.3
-78.3

PERCENT
UF MS

97.2
97.7
98.2
98.6
99.0
99.2
99%.4
99.6
99.7
99.8
99.8
99.9
99.9
99.9
100.0
100.0
100.0
100.0
100.0



Stl

MATRIX ORDER = 3

DEGREE OF MATRIX POLYNOMIAL = 1
ZEROS (NUMERATOR ROOTS)
LEADING COEFFICIENT = 4.0000000€+00 -E+00 cp 0.772 SEC. ROOTING SEC. = 0.002
REAL IMAGINARY ZETA DMEGA CPS REAL IMAGINARY ZETA OMEGA %23
1 -3.00 0 1.000 3.00 0.477
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 1
4.00000E+00 1.20000E+01
POLES (DENOMINATOR ROUTS)
LEADING COEFFICIENT 2 5.0000000E+00 +«E+00 ce 0.779 SEC. ROOTING SEC. = 0.001
REAL IMAGINARY ZETA OMEGA cPs REAL IMAGINARY ZETA OMEGA CPS
1 -2.00 -0 1.000 2.00 0.318 2 -1.00 «0 1.000 1.00 0.159

POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 2

5.00000E+00 1.50000€+01 1.00000E+0L
R N L R Ry ey T R T X s
CANCELLED POLES CANCELLED ZERODS

B T A R g e T R N Ry Y Y
REMAINING ZEROS AFTER CANCELLATION

REAL IMAGINARY LETA OME GA cPsS REAL IMAGINARY IETA OMEGA CPS
1 -3.00 -0 1.000 3.00 0.477
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 1
8.00000E~01 2.40000E+00
R T O R TR
REMAINING POLES AFTER CANCELLATION

REAL IMAGINARY ZETA OMEGA CcPS REAL IMAGINARY ZETA DMEGA CPS
1 =2.00 «0 1.000 2.00 0.318 2 -1.00 -0 1.000 1.00 0.159
POLYNOMIAL COEFFICIENTS, FIRST COEFFICIENTS ORDER = 2
1.00000E+00 3.00000€E+00 2.00000E+0Q0
L L T A R R S LI X VTR T2 P I TTS 2T
MEAN SQUARE VALUE = 5.906E-0ly RMS = 7,685E-01
CHARACTERISTIC FREQUENCY = 1,683E+01 CPS (1.058E+02 RADIAN/SECOND)

*%x % PHASE MARGIN * =

PHASE DIRECTION OF TRAVEL
OMEG A CcPs PHASE MARGIN AMPLITUDE PHASE
6.09€-~01 9.70E-02 323.2 143.2 DECREASE CwW
GAIN = 1.00 PHASE = «0 (DEGREES) LEADING COEFFICIENT = 1.000E+00 -E+00 ceP 0.824 SEC. ROOTING SEC. = 000
REAL IMAGINARY ZETA OMEGA CPS REAL IMAGINARY LZETA DMEGA CcPS
1 ~1.90 -0.889 0.906 2.10 0.334 2 -1.90 0.889 0.906 2.10 0.334
GAIN = 2.00 PHASE = «0 (DEGREES) LEADING COEFFICIENT = 1.000E+00 «E+00 cp 0.829 SEC. ROOTING SEC. = 0.001
REAL IMAG INARY ZETA OMEGA CPS REAL IMAGINARY ZETA - QME GA ces
1 ~2.30 ~1.23 0.882 2.61 0.415 2 -2.30 1.23 0.882 2.61 0.415
GAIN = 1.00 PHASE =270.0 (DEGREES) LEADING COEFFICIENT = 1.000E+00 +«E+00 ce 0.835 SEC. ROOTING SEC. = «000
REAL IMAGINARY ZETA OMEGA CcPS REAL IMAGINARY ZETA OMEGA cPs
1 ~2.30 ~0.346 0.989 2.33 0.371 2 -0.696 1.15 0.519 l.34 0.213



24

GAIN = 2.00 PHASE =270.0 (DEGREES) LEADING COEFFICIENT = 1.000E+00 «E+00 cp 0.840 SEC. ROOTING SEC. = 0,001
REAL IMAGINARY ZETA UMEGA CPS REAL IMAGINARY ZETA OMEGA ces
1 -2.51 -0.388 0.988 2.54 0.404 2 -0.490 1.99 0.239 2.05 0.326



APPENDIX A: QR EIGENVALUE CALCULATION PROCESS

An elementary method for extracting roots of a matrix of polynomials is first to expand the
determinant into a single polynomial.

I[F1l = Q(s) where Q(s) is a polynomial (A-1)

If the roots of Q(s) = 0 were extracted, they would be identical to the roots of |[F]| = 0.
Although this method is cumbersome and of little practical use, insight may be gained by
viewing the problem in this manner since the roots (or eigenvalues) are so instrumental in
QR calculations. Specifically, the extent to which the polynomial, Q(s), is modified by row
and column operations, can be viewed in terms of the rules applying to row and column
operations of determinants. These determinant rules will be used to perform all possible
preliminary reductions of the [F] matrix.

After completion of the reductions, the remaining matrix will be transformed to eigenvalue
form. The two principal elements of this operation will be to first change the variables so
that the matrix has no derivative higher than first order. The first order matrix will then be
normalized (diagonalized) to produce the desired eigenvalue problem.

A. PRELIMINARY REDUCTIONS
The matrix will be reduced in size by use of the following properties of determinants.

1. SINGULAR MATRICES

If any row (or column) is zero, the matrix is singular, and its determinant is zero.

I1. 12. 0 14.
21. 22. 0 24.
=0 (A-2)
31. 32. 0 34.
41. 42. 0 44.

2. EXPANSION BY CO-FACTORS OF A SPARSE ROW OR COLUMN

If any row (or column) is zero except for one element, the determinant may be reduced by
one order. The row and column corresponding to the element are removed, and the element
is written outside of the determinant as a factor. If the element is a polynomial, the roots of
the polynomial are extracted. The determinant is multiplied by ( -1 )1+J, where i and j are
the row and column subscripts of the non-zero element of the row or column which is
being removed.

1. 12. 0 14. 11. 12. 14.
21, 22. 23, 24, 31. 32. 34.

=-23. (A-3)
31, 32, 0 34, 41. 42. 44,
41, 42. 0 44.
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3. SCALAR MULTIPLICATION

If any row (or column) is multiplied by a factor, the determinant is multiplied by that
same factor.

11. 12. 3. 14. 11. 12. 13. 14.
. 22. 23. 24 21. 22. 23. 24.

21 =k (A-4)
k31.  k32.  k33. k34 31. 32. 33. 34.
41. 42. 43. 44, 41. 42. 43. 44

4. INTERCHANGING ROWS OR COLUMNS

If any two rows (or two columns) are interchanged, the determinant changes sign.

1. 12. 13. 14. 11. 12. 13. 14.
41, 42, 43, 44. 21. 22. 23. 24.

=- (A-5)
31. 32. 33. 34, 31, 32, 33. 34
21. 22. 23. 24, 41, 42. 43, 44,

5. ADDITION OF ROWS OR COLUMNS

If any row (or column) has another row (or column) added to it, the determinant is
unchanged. The determinant is unchanged even if the added row has been multiplied by a

constant.
11. 12. +kli4. 13. 14. 11. 12. 13. 14.
21. 22. + k24. 23. 24. 21. 22. 23. 24.
= (A-6)
31 32. +k34. 33. 34. 31. 32. 33. 34.
41. 42. + k44. 43. 44, 41. 42. 43, 44,

6. GUASSIAN REDUCTION

The last operation leads to Guassian reduction. Multipliers are selected such that a row (or
column) is forced to be zero except for one element. For example, the first column of the
matrix below will be cleared of terms, except for the 3, 1 element, by performing

algebraic operations on its rows.

11. 12. 13. 14.
21. 22. 23. 24.

F1= 31. 32. 33. 34. (A-7)
41. 42. 43. 44.



Add -11/31 times row 3 to row 1.
Add -21/31 times row 3 to row 2.
Add -41/31 times row 3 to row 4.

11-(11/31)31  12-(11/31)32 13- (11/31)33 14 - (11/31)34
(Fli= | 21- Q131031 22-(21/31)32  23-(21/31)33  24-(21/31)34 | (5 g,
31 32 33 34 _

41-(41/31)31 42-(41/31)32  43-(41/31)33 44 -(41/31)34

0 .646 1.292 1.937

I[F]| = 0 323 .646 968 (A-9)
31 32 33 34
0 -.320 -.643 -.965

The foregoing operation allows reduction to a 3 x 3 determinant by writing element 3, 1
outside the determinant as a scalar multiplier and eliminating the first column and third
row. However, if column 1 had contained polynomials, those polynomials would have been
scattered throughout the array. Except for special situations, operations with polynomial
elements are of no use.

SYSTEMATIC REDUCTION OF MATRICES
By applying the above operations, dramatic reductions in the matrix size may be possible.
Also, removable factors sometimes cause difficulty to matrix rooting schemes if those
factors are not removed. Thus, before transforming an eigenvalue problem, all possible
reductions should be made to the [F] matrix. The reductions are separated into three cases:
Case | - Row or Column Zero Except for One Element
Case 2 -- A Row or Column With Only One Power of s (including zero)

Case 3 - A Row or Column With a Common Polynomial Factor

The reduction process is illustrated by example. The following matrix is assumed:

252 +3s+9 -552+6 0 0 -4 0
-2s+4 4s + 4 0 4s + 4 0 -4
Q(s) = 0 -20 s+20 O s+10 O (A -10)
0 6 0 -2s-2 0 2
5s 0 0 0 10s 0
3s 0 0 0 0 -s-15
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CASE 1: ROW OR COLUMN ZERO EXCEPT FOR ONE ELEMENT

Search all rows and columns for a row or column with only one* non-zero element. The

3, 3 element satisfies that requirement. The determinant is reduced by removing row 3 and
column 3. The factor s + 20 is brought outside of the determinant. The sign of the determin-
ant is still positive because (-1)1* = 133 = (-1)0 = +1.

22 +43s+9  -5s2+6 0 452 0
-2s+4 4s + 4 45+4 O -4
Q(s)=(s+20) (O 6 -2s-2 0 2 (A-11)
-5s 0 0 10s 0
[ 35 0 0 0 -s-15 |

CASE 2: A REDUCIBLE ROW OR COLUMN WITH LIKE POWERS OF s

If a row or column has only one power of s, the power of s can be removed as a factor.
The row or column is then constant and can be operated upon by Guassian elimination. The
determinant is re-examined for a single element in a row or column. No such situation exists
for the example. Next, all rows and columns are examined for a row or column with only
one power of s. Row 4 satisfies that requirement. Row 4 is reduced by subtracting -1/2

times column 4 from column 1:

[ 42+35+9 55246 0 42 o |
-2s+4 45+ 4 4s + 4 0 -4
Q(s)=(s+20) | O 6 25-2 0 2 (A-12)
0 0 0 10s 0
| 3s 0 0 0 s-15 |

Thus, the determinant now satisfies the Case 1 conditions: Row 4 is zero except for the
4, 4 element. Factoring +10s (positive because (-1 )4’4 =+1) and dropping Row 4 and

column 4:
4s2+3s+9  -552 0 o |
-2st+4 4s + 4 4s + 4 -4
Q(s) = (10s)(s + 20) (A-13)
0 6 -2s -2 2
|_3S 0 0 -s-15 ]

*1f a column or row is found to be all zero, the matrix is singular. The procedure can go

no further. No roots can be found.
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CASE 3: A REDUCIBLE ROW OR COLUMN WITH COMMON POLYNOMIAL FACTOR

The matrix is again examined for the Case 1 conditions, but that situation does not exist.
Case 2 conditions.are also absent. However, the third column satisfies Case 3 because. the
common factor k(s + 1) is present (k an arbitrary constant). Column 3 is reduced by adding
1/2 times row 2 to row 3:

(42 +35+9 55246 0 o |
2s+4 4s+4 4s+4 -4
Q(s) = (10s)(s + 20) (A - 14)
S+2 25+8 0 0
| 3s 0 0 =s-15 ]

The Case 1 conditions are thereby provided since element 2, 3 is the only non-zero element
in column 3. Factoring (-1 )2+3(4s +4)= (-1)5(45 + 4)=-4(s + 1) and removing row 2 and
column 3:

452 +35+9 -552 + 6 0
Q(s) = -4(s + 1)(10s)(s + 20) | s +2 25+ 8 o .| a-1%
3s 0 s-15

The last reduction (Case 3) created another Case 1 situation with column 3 being zero except
for element 3, 3. Thus, the point is made for re-checking the determinant for all cases on
each cycle of the reduction process. Factoring -(s + 15) and removing row 3 and column 3.

Q(s) = 40(s + 15)(s + 1)(s)(s + 20) [

452 +35+9 552+ 6
(A-16)
-+ 2 2s+ 8

Since the remaining 2 x 2 matrix does not satisfy any of the three cases for reduction,
further application of the reduction conditions is futile. The 2 x 2 determinant will once
again be treated as a matrix, and its roots will be found by forming a eigenvalue problem.
The total set of roots of the original matrix will consist of the 2 x 2 matrix eigenvalues and
the roots of the removed factors.

Note that the processes of Cases 1 and 2 are specializations of Case 3. Also, Case 1 is a
specialization of Case 2. However, Case 3 seldom occurs in practice. Case 2 occurs much

less often than Case 1. By appointing the cases in order, a computing program can be made
to execute more efficiently.
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B. FORMATION OF THE EIGENVALUE PROBLEM

The remaining work consists of separating the problem into a constant matrix and a first
order matrix, [AO +s [A fy} = {03 The [A;] matrix will be normalized and
the resulting constant matrix will bé moved to the right side of the equation,s {y} =

[A] {yi .

1. TRANSFORMATION TO FIRST ORDER FORM

A systematic approach is used to put the problem into first order form. This approach will
correspond to the computer algorithm. Two singularly dimensioned arrays will be used to
sort the matrix columns into their respective locations in [AOJ and [Al] )

IORD(),i=1, m - - an array whose elements are equal to the highest power of s in each
column. If a column is constant, IORD-1 for that column. The constant, m, is equal to the
size of the [F] matrix.

ID(@i),i= 1, md - - an identification array to keep track of the columns, segregated according
to the power of s. The elements of ID are equal to the column number plus 1000 times

the power of s for that column. The constant md is equal to the matrix size (m) times the
highest power of s plus one (md).

The previous example will be used to illustrate.

452 +3s+9 552 +6 x;] (0
= (A'16)
-5+ 2 2s+ 8 X9 0

where X1 and X are dummy variables.

Values of m and md: m =2 (a 2 x 2 matrix)
md = 3 (highest power of s plus 1)

The IORD array: IORD = (2, 2), i.e. both columns have at least one second order
coefficient.

The ID array: ID = (1, 2, 1001, 1002, 2001, 2002), i.e. The columns are ordered in
ascending powers of s.

Thus, the IORD and ID arrays are associated with the matrix as follows:



IORD = 2 2
[452 +3s+9 552+ 6:| X 0
s+ 2 25 +8 xo) o
ID = 1 2 1001 1002 2001 2002 - (A-17)
9 6 3 0 4 -5 X1 0
+s + 52 =
2 8 -1 2 0 0 X 0
Next, the sum of the JORD array is formed.

2
Z IORD () =k=4 (the size of ':AO] and [Al:l *)

i=1
Hence, k is the apparent size of the state variable problem.

The AO] matrix is formed from columns of the original matrix [F]. The hierarcy of
column storage requires the column order to be unmodified from the column order of [F].
Within each column, the separate columns for each power of s must be arranged in decend-
ing order starting with the IORD-1 power of s.

ID = 1001 1 1002 2
3 9 0 6
-1 2 2 8
Ag =f—==———m——m == (A -18)
0 0 0 0
0 0 0 0

The identification array (ID) is a statement of the hierarcy; that is, first column and first
power of s, first column and zero power of s, etc.

The [A 1] matrix is formed from the highest power of s columns. If a column is
constant, the s1 terms are used. The first column highest power of s is stored into the
first column of Ai - Then IORD-1 columns are skipped. This process continues until
all of the highest power of s columns of [F] have been stored into [_A1:| .

ID= 2001 2002

4 0 -5 0

0 0 0 0 (A-19)
Al =sl-————— e e—_——_ =

0 0 0 0

0 0 0 0

*By inspection, the fourth order size is faulty because the determinant of the [F] matrix is
third order. However, the normalization process will rectify this shortcoming. The order
obtained by inspecting the columns will be referred to as the apparent order.
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The state variables are determined from the first n values of the ID array. For the example
ID = (1001, 1, 1002, 2) is interpreted as ()'(1, X1 )'(2, x2> .

The first order problem can now be assembled by adding the additional equations relating
the second order and higher derivatives.

s [ijz (xi):l ) =0 (A -20)

dv1

.....
|

= 1, m (the original variable numbers)

2, IORDQ@) (If IORD(i) = 1, the equation does not exist for that i.)

j

For the same problem,

40 1 g (x) =0t ) i) =0
s | — (X - (%) =00 sxy-xy =
| dtY ( 1)_ el 1
[ 40 dt! o o
S — X - = X = :SX2‘X2= A_21
40 (*2) dtl( 2) ( )
3 9 0 6] [4 0 -5 0] X 0
-1 2 2 8 0 0 O 0 X1 0
+ Ny = A-22
10 0 0/ %o 1 0o o %, 0 ( )
o o -1 0] o 0o o 1 X5 0
or,

[[Ao] s [Al]] (yj = 10}

A change in sign may have occurred in the transformation to first order form. The sign
change is (-1)°P. The integer, cp, equals the number of column permutations that would
be required if the columns of Al which contain the original columns of [F] are packed
to the left. For the sample problem the Al matrix is packed to the left if columns 2
and 3 are switched. Thus, cp = 1 and the removed factor changes sign.

Removed Factor=-40(s + 15) (s + 1) (s) (s + 20)



2. NORMALIZING THE FIRST ORDER MATRIX

If the first order matrix [A 1] , is non-singular, the eigenvalue problem would be

s tvi =- [A]] 7" [40] tv1 = [A] 0y (A-23)
Since, in general, [A 1] is singular (e.g. the same problem), special steps must be pursued.

The first task is to put the matrix into normal form by using Guassian elimination by row
operations. That process is continued until no pivot can be found. For the sample problem,
EA{J is searched for the largest magnitude value - the 1, 3 element = -5. Row 1 is divided
y -5. Guassian elimination along column 3 will produce no change in the matrix since all
other elements in column 3 are zero. Exchanging* columns 1 and 3 leads to the following

form:
(0 18 -6  -1.2] (1 0 -8 o] /% 0
2 2 -8 o 0 0 0 X 0
+ . = A-24
o o0 40 1o 1 o 0 X ? o ( A
-1 o 0 o | 0o o0 o0 1] Uy 0

To keep the determinant invariant, the row 1 division by -5 must be compensated by
multiplying the removed factory by -5. The sign of the factor must change to account for
the column swap.

Removed Factor = -(-5) (-40) (s + 15) (s + 1) (s) (s + 20)

=-200(s+15) (s + 1) (s) (s + 20)
The matrix is again searched for a pivot, but the search must exclude row 1 and column 1.
The pivotal element in 3, 2 is selected. The pivot is already equal to 1 and no division is

required. Guassian reduction is not required because column 2 is zero except for the pivot.
Rows 2 and 3 are switched and the removed factor changes sign.

o <18 -6 -12] [1 o -8 07| (&
0 0 10 0 1 o0 0 X
2 02 -1 8 |Tlo 0o o o g (D0 A2
L1 0 0 0 _ 0 0 O 11 X2

Removed Factor = +200(s + 15)(s + 1)(s)(s + 20)

*Exchanging rows and columns is used for illustration only. The computer program keeps
track of the pivotal locations and performs the switching after all normalization is complete.
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The pivot search now must exclude rows 1 and 2 and columns 1 and 2. The 4, 4 element is
selected. Division and Guassian elimination are not required. Rows 3 and 4 are switched,
and the removed factor changes sign. Columns 3 and 4 are switched and the removed
factor changes sign again.

o -18 -12 -67 [1 0 0 -8] Xy

o 0o 0 -1 0O 1 0 0 X

a0 o o |"*lo 0o 1 o0 (010 (A2
2 2 8 1] Lo o o od] (5

Removed Factor = + 200(s + 15)(s + 1)(s)(s + 20)

The pivot search must exclude rows and columns 1, 2 and 3. Thus, the 4, 4 element is the
only candidate and that element is zero.

The matrix equation is in the following form:
I B TR L R
-—— - — = S ———I——— -—— = —_ -
@l | 2 Ba1 1 B2 ) 0

@jj and Bij are matrix partitions

where:

B11 = L, and identity partition

B> is non-zero in general

By1 is zero due to the Guassian reductions
B> is zero because no pivot could be found

zj and z, are the corresponding variables.

[“11 | “12} [1 | 512} {21}
— e s |- —— 7= {0} (A -28)
a1 9 o 0 %)

Guassian elimination by column operations will be used to force to zero.
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For the sample problem, the Guassian elimination consists of adding .8 times column 1 to

column 4.
0 -18 -12 -6] 1 0 0 0
0 0 0 -1 0 1 0 0
+s
-1 0 0 -8 0 0 1 0
2 2 8 6 | L0 0 0 ©
The general form is now,
o« 7 1 o
s T S T T,
®21 4 922 |

X3
X1
= {0} (A-29)
X2
X]
= {0} (A -30)

Guassian elimination of the columns of [AO] will be used to eliminate the columns which

comprise &) 5 and a5y .

The pivot search must extend to all elements of o' 12 and a'22. For the sample case, the

pivot is -1 in row 2. Row 2 is divided by -1.

0 -18 -12 -6 1 0 0

o 0 0 ! o -1 0
+s

-1 0 0 -8 0 0 I

L2 2 8 6 0o 0 0

Removed factor = -200(s + 15)(s + 1)(s)(s + 20)

Then, .6 times row 2 is added to row 1,
.8 times row 2 is added to row 3, and
-.6 times row 2 is added to row 4.

[0 -18 -12 0 1 -6 0

0 0 0 1 0 -l 0
+s

-1 0 0 0 0 -8 1

2 2 8 0| 0 6 0

o O O O

o o © O

X2
X1

= {01  (A-31)

X1

;‘2
X1

= {0t (A-32)

X2
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The Guassian reduction forces the un-normalized columns to be zero except for one element.
The matrix can be reduced and the normalization process resumed.

0 -1.8 -1.2 1 -6 0 X'
-1 0 0 |+s|0 -8 1 x1 » = {0 (A -33)
2 2 8 0o 6 0 X5

Removed Factor = -200(s + 15)(s + 1)(s)(s + 20)

If 1,1 element is selected as a pivot, no division or Guassian elimination is required for
column 1.

The 2,3 element is already normalized to 1 and column 3 requires no Guassian elimination.
Swapping columns 2 and 3,

0 -1.2 -1.8 1 0 -6 X'
-1 0 0 +s |0 1 -8 Xy » = {0} (A-34)
2 8 2 0 0 .6 X1

Removed Factor = 200(s + 15)(s + 1)(s)(s + 20)

The pivot search is restricted to row 3 and column 3. Hence, the pivot is .6. Dividing row
3 by .6,

0 -12 -18 1 0 -6 x
-1 0 0 |+s|o 1 -8 xy » = {0} (A -35)
333 13.33 3.33 0o o0 I X1

Removed Factor = 120 (s + 15)(s + 1)(s)(s + 20)
Add .8 times row 3 to row 2, and
add .6 times row 3 to row 1.

2 6.8 2 1 0 0 x'y
1.67 10.67 267 | +s 10 1 0 X9 = {0} (A-36)
3.33 1333 3.33 0 0 | X1



The eigenvalue problem is formed by moving the constant matrix to the right side of the
equation.

x'y -2 -6.8 -2 x'y
s{ Xy » =|-1.67 -10.67 -2.67 | < x, (A-37)
X -333  -1333 -3.33 | [ x
or,
f{xi = [A] ix} (A -38)

The roots of [A] may be found by using the QR algorithm (see ref. 3).
s=15.
s=-488+j1.05

The complete set of roots is formed by combining the above roots with roots of the
removed factor. The seven roots of the sample problem follow.

s =-20

=-15

-15

=-488 +)1.05
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APPENDIX B: QR STATE SPACE FORMULATION

This section describes the procedure QR uses for transforming linear, constant coefficient,
equations state variable form.

ix} = [A] {x} + [B] {U]
nxn nxm
[F] iq4 = {Ul » (B-1)
mxm {y{ = [C] {x} + [D] {Ul  {IDI
kxn kxm

where:

[F] differential equations matrix in terms of differential operator,
fq} vector of variables

{Ul vector of inputs

[A] state variable coefficient matrix

[B] state variable input matrix

[C] output matrix for state variables

[D] output matrix for inputs

{x} state variables

{yl output variables (composed of all of the q's and possibly some of the derivatives of the
q's

{ID} an identification array which relates to y's to the q's and derivatives of the q's
Thus, given [F] the state variable problem is transformed to [Al, [B], [C], [D] and { ID}

In appendix A, reductions were performed on [F] prior to transformation to a first order
matrix equation. Those reductions are not advisable for the general case because identifi-
cation of the state variables becomes difficult. Therefore, the procedure herein will
transform directly to first order form and then normalize. The preliminary reduction
process will be bypassed.

1. TRANSFORMATION TO FIRST ORDER FORM

The method to transform to first order form used in Appendix A also applies to the general
state variable problem. However, the right-hand side {U} , must be retained. The sample
problem is repeated below and then put into first order form.
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where:
(Yl, y2, ¥3, Y4, Y5, Y6, Y7, V8, yg)

=(<'11, a1, 42, 42, 93, 94, 45, 9s, qe)

The nine apparent state variables are identified by the first nine elements of the ID vector.
The form of the problem is now,

[[Ao] +s [Al]__] {y} = g-gg (B -4)

B. NORMALIZING THE FIRST ORDER MATRIX

For Option 1, Guassian eliminations were used to normalize the matrix. Singularities of the
first order matrix were removed by performing Guassian elimination on the constant matrix.
The normalization cycle will be identical to Option 1 except bookkeeping must be maintain-
ed with regard to the effect the operations have on the input and output variables. This
effect can be visualized by expressing Guassian elimination as a matrix multiplication. For
the case of Guassian elimination by row operations,

[Ve] [A]- [A]

where [Vﬂ is a matrix which normalizes row 1 and zeros all elements in column 1
except for the 1, 1 element.

The [Vl:l matrix is an identity matrix except for the 1 column.

1 Vig

1 Vog

(B-5)

| Ve IJ

163



164

The vgy element is equal to the constant required to normalize the Agyg element to 1. The
other v's perform the row operations.

Vi (i#¥1) adds v;o times row 1 to row .

Thus, one Guassian elimination step by row operations can be expressed by a
premultiplication by [Vl]

[Va] [[Ao] +s[A]]{y} = [Vp] 1ot = (Ut (B - 6)

The purpose of expressing the operation in the above manner was to illustrate the effect on
jy} and {U}

{y{ was undisturbed

{U}  was transformed to {U'} = [Vl] {U]

In a similar manner a [T!] matrix can be devised to perform Guassian elimination by
column operations.

[ 1 ]
1
[Te] ={tar tea -+ - tog ten ®-7
i ]

tgg normalizes A gg to 1
tg; (G# 1) adds tg; times column 1 to column j.
The operation as pertains to the first order problem,
I:[AO] + s[A]] [Te] {¥'} = U} (B-8)
ty} is transformed to 1y'} = [Tl_] 1V}

{U} is unchanged



If interchanges of row and columns are required, operational matrices can also be
devised.

[—

Vi = : | (B-9)

. Mg [A]=[A]
interchanges
rows k and £ of [A]

. 1
—— Q —_
" k
1
0 1
1
[TkQ] = . (B-10)
1
1 0
1
1

[A] (e = [¥]
interchanges
columns k and £ of [A].
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All of the row and column operations can be grouped together as,

(] - - - D (o] +s I [] - [ 65 ) = tw)
vy = [Tl] [Tz] ..... [T)\] {y}
{(uy=1Jv,1..... [Vz] [Vl] {U} (B-11)

where the [T] or [V] matrices perform either Guassian elimination, or row or column
interchanges.

|
'
<
2
| I

The actual computer operations do not require making [T] and [V] matrices and carrying
out the matrix multiplications. The first order matrix equation will be restated as,

[[AO] +s [AI]][T] (y] =[V] {U} (B-12)

where [T] is an identity matrix comfortable with {y}, and [V]is an identity matrix of the
same order as [T] but with only enough columns to be comfortable with {U} .

For the sample problem, [T] is a ninth order identity matrix with columns 7, 8 and 9
missing.

The strategy used during the normalization cycle will be as follows:

o |f Guassian elimination by row operations is performed on [AO] and [A 1] , the
same operations will be performed on [V].

o [f Guassian elimination by column operations is performed on [AOJ and [Al] , the
same operations will be performed on [T].

® If two rows of [Ao] and [Al] are switched, the same rows will be switched in [V].
® [f two rows of [AO] and [Al] are switched, the same rows will be switched in [T].

In summary, row operations will act upon [V], and the column operations will act upon
[T].




The sample problem is too cumbersome for presentation of all the steps. Therefore, only
the end result of the normalization process is shown.

2 o o 0 2 - 68 o O]
0 1 0 -1 0 -3 0 0 0
1.67 0 20 0 167 -1333 10 0 0
10 © 0 15 10 40 0 0 0
333 0 0 0 333 1333 0 0 0
1.67 0 0 0 2.67 1067 0 0 0
-167 0 0 0 -1.67 -6.67 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 L
1 0 0 0 0 0 0 0 0] X
0 ] 0 0 0 0 0 0 0 X
0 0 1 0 0 0 0 0 0 X3
0 0 0 1 0 0 0 0 0 X4
+s |0 0 0 0 1 0 0 0 0 X5
0 0 0 0 0 1 0 0 0 Xg
0 0 0 0 0 0 1 0 0 X
0 0 0 0 0 0 0 0 0 X1R
0 0 0 0 0 0 0 0 0| ‘xor
-2 5 0 1 16 0] u
0 0 0 -5 0 0 uy
0 417 1 .833 0333 0 uy
0 2.5 0 5 8 -1 uy
=10 .833 0 1.67 267 0 us (B - 13)
0 667 0 1.33 133 0 ug
0 -417 0 -833  -.033 0 0
0 0 0 0 2 0 0
0 - -417 0 -833  -0333 0| 0
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Y2
Y3
Y4
s
Y6
Y7
Y8
Y9

[-3.33

-1.67

o
o © O
()

o

o O
(=)
o

—

1.67
0
0

-13.33

-10.67

6.67
0
0

(o)
OO_L
o

o
o

X1
X2
X3
X4
X5
X6
X7
X]R
X2R

a1
q
a?
a2
a3
a4

a5
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Note that reduced rows and columns have been retained and packed into the lower rows

and right hand columns of the matrix.

The general form is

[[AO] +s [AIJ] {v'} =v1 tul

[ [A] | [01] (1] | 1] ¢ x
nxn nxn
SR ) [ = [V] {U} =
I I kxm
01 | [ (01 A | ( *k
_ [t 1R L
tyt = |:kxn ' £XRR]] gXRs
where:

k original size of the problem (the apparent state variable size)
n  size of the state variable matrix
R =n-k
m  the number of input variables (the size of F)
The first n rows of the matrix yield,
[-A] §x} + six} = [B] {Ul
or,
s {x} =[A] {x} +[B] {U}

If [AI] is zero, the last R rows yield,

{*r} = [By] U

- [B]_
nxm
— |{U§
[Pr]

Rxm

L -
kxm

! (B-15)

(B-16)

(B-17)

169



The output equation is,
= ! X =
tyi = [CiTg | ;XRz [C] {xi + [TR] {xr}

=[C] i + [TR] [BR] tU}
{y; =I[C} {x} +[D] {U} (B-18)

Summarizing,
® [A] is the negative of the first n rows and columns of [AO] .
® [B] is the first n rows of [V].

® [C] is the first n columns of [T].

e (D] = [TR:I [BRJ where,
[TR] - -last R columns of [T], and

[BR] - - last R rows of [V].

For the sample problem, the results are as follows.

[-2 0 0 0 -2 6.8 0
0 -1 0 ] 0 3 0
-1.67 0 20 0 -1.67 1333 -10
[Al= [-10 0 0 -5 -10 40 0 (B-19)
333 0 0 0 -3.33  -1333 0
-1.67 O 0 0 -2.67 -1067 O
1.67 0 0 0 1.67 6.67 0 |
[-.2 5 0 1 .16 0]
0 0 0 -5 0 0
0 417 1 .833 0333 0
[B]= | O 2.5 0 5 8 -1 (B -20)
0 833 0 1.67 267 0
0 667 0 1.33 133 0
|0 -417 0 -833  -0333 0|
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|li
3
i

(B-21)

0“!

-13.33

-3.33

0

0

[3.33

267

0

-10.67

0

0

-1.67

Oqq

0

6.67

1.67

1.67

0_

Y

[C]

(B-22)

267

1.67

.833
00

133

1.33

677

0

0

-.0333

-.833

0

-417

[D]=

(B-23)

(B-24)
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Br] = (B - 25)
0 -417 0 -.833 -.0333 0

The situation for [AI] # 0 occurs when impulsive terms are presented in the original
equations. These terms can not be accommondated in the usual state variable form.
Consider the following matrix equation.

S -52 X1 Ul
= (B -26)
0 1 X9 U2
The transfer function can be obtained directly.
SXy- 52 X9 = Ul
2" 2 B-27
SX1=U1+82U2 ( i )
Xl = (I/S) Ul +s U2
If the matrix is put into first order form,
0 0 O 1 -1 0] (x 1 0 (U
0 0 1j+s]0 0 0f<x%=10 1|<U, (B-28)
0 -1 0O 0 0 1 X9 0 0
and transformed to the state variable form,
0 0 0 | 0 0 xl' 1 0 Ul
0 1 0] +s {0 0 0 Xy » =10 1 U2 (B-29)
0 0 1 0 -1 0 X9 0 0
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Xl ] 0 1 XI

x92= [0 0 1] <x (B - 30)
Xy 0 1 0o (=x
x|" is the single state variable
[A] =0
Bl =0 d
Uy
s {xt =[A] {x} +[B] {Ul ;sx=@Q)x+ [l ¢ U ; sx = U (B-3D
2
C=(1,0,0)

Solving for the reduced variables,

= = = {Bg'| U} (B - 33)
2 s 10 Lo o] (Y2) [0 ] (%2 e
0 1 0 ]
0 1

[D1= [Tg][Br] =l0 ! [0 J = [0 s (B -34)

0 0 1
iyt =[C] ix} + [D] {U} (B -35)

Xl 1 Xl' 0 S U]

Xyp =40 + |0 s U, (B - 36)
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sxi =U; ;xi=U1/s
i (B-37)
xl=U1/<s+sU2) ; X9=sUy ; x9=Uj

Therefore, if [ # 0, the matrix [ [AI] + [I]] must be inverted and used to
premultiply [BR

b f ) + o B

This special case is usually not encountered in practice and no provision is made for
forming [HR’] in the computer program The [D] matrix is computed as if [Aﬂ

were zero. However, the , —_I and [BR] matrices are preserved. For special
applications, the user could compute ESR




N—
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